Multi-parameter Tikhonov regularization - An augmented approach

被引:8
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ]
Takeuchi, Tomoya [4 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[4] Univ Tokyo, Inst Ind Sci, Collaborat Res Ctr Innovat Math Modelling, Meguro Ku, Tokyo 1538505, Japan
关键词
Multi-parameter regularization; Augmented Tikhonov regularization; Balanced discrepancy principle; CONVEX VARIATIONAL REGULARIZATION; CONVERGENCE-RATES; PARAMETER; SPACES;
D O I
10.1007/s11401-014-0835-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 50 条
  • [31] Multi-Parameter Regularization Method for Synthetic Aperture Imaging Radiometers
    Yang, Xiaocheng
    Yang, Zhenyi
    Yan, Jingye
    Wu, Lin
    Jiang, Mingfeng
    REMOTE SENSING, 2021, 13 (03) : 1 - 15
  • [32] Augmented Tikhonov Regularization Method for Dynamic Load Identification
    Jiang, Jinhui
    Tang, Hongzhi
    Mohamed, M. Shadi
    Luo, Shuyi
    Chen, Jianding
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [33] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [34] Embedded techniques for choosing the parameter in Tikhonov regularization
    Gazzola, S.
    Novati, P.
    Russo, M. R.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (06) : 796 - 812
  • [35] On pseudooptimal parameter choice in the Tikhonov regularization method
    Leonov, A.S.
    Vestnik Moskovskogo Universiteta. Ser. 15 Vychislitel'naya Matematika i Kibernetika, 1995, (01): : 40 - 44
  • [36] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798
  • [37] A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise
    Jiang, Dandan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (09) : 3702 - 3730
  • [38] A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data
    Xu X.
    Zhao J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (07): : 956 - 963and973
  • [39] Multi-parameter regularization techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    NUMERISCHE MATHEMATIK, 2003, 94 (02) : 203 - 228
  • [40] Multi-parameter regularization techniques for ill-conditioned linear systems
    C. Brezinski
    M. Redivo-Zaglia
    G. Rodriguez
    S. Seatzu
    Numerische Mathematik, 2003, 94 : 203 - 228