Multi-parameter Tikhonov regularization - An augmented approach

被引:8
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ]
Takeuchi, Tomoya [4 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[4] Univ Tokyo, Inst Ind Sci, Collaborat Res Ctr Innovat Math Modelling, Meguro Ku, Tokyo 1538505, Japan
关键词
Multi-parameter regularization; Augmented Tikhonov regularization; Balanced discrepancy principle; CONVEX VARIATIONAL REGULARIZATION; CONVERGENCE-RATES; PARAMETER; SPACES;
D O I
10.1007/s11401-014-0835-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 50 条
  • [31] Parameter selections for Tikhonov regularization image restoration
    Zhang, Bin
    Jin, Fei
    [J]. 2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1419 - 1423
  • [32] Embedded techniques for choosing the parameter in Tikhonov regularization
    Gazzola, S.
    Novati, P.
    Russo, M. R.
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (06) : 796 - 812
  • [33] A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data
    Xu, Xinqiang
    Zhao, Jun
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (07): : 956 - 963
  • [34] A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise
    Jiang, Dandan
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2017, 36 (09) : 3702 - 3730
  • [35] Multi-parameter regularization method for particle sizing of forward light scattering
    Lin, Chengjun
    Shen, Jianqi
    Wang, Tian'en
    [J]. JOURNAL OF MODERN OPTICS, 2017, 64 (08) : 787 - 798
  • [36] Multi-parameter regularization techniques for ill-conditioned linear systems
    Brezinski, C
    Redivo-Zaglia, M
    Rodriguez, G
    Seatzu, S
    [J]. NUMERISCHE MATHEMATIK, 2003, 94 (02) : 203 - 228
  • [37] Multi-parameter regularization techniques for ill-conditioned linear systems
    C. Brezinski
    M. Redivo-Zaglia
    G. Rodriguez
    S. Seatzu
    [J]. Numerische Mathematik, 2003, 94 : 203 - 228
  • [38] A Multi-parameter Regularization Model for Deblurring Images Corrupted by Impulsive Noise
    Dandan Jiang
    [J]. Circuits, Systems, and Signal Processing, 2017, 36 : 3702 - 3730
  • [39] Monitoring the nociception level: a multi-parameter approach
    Ben-Israel, Nir
    Kliger, Mark
    Zuckerman, Galit
    Katz, Yeshayahu
    Edry, Ruth
    [J]. JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2013, 27 (06) : 659 - 668
  • [40] A Multi-Parameter Approach for Apricot Texture Analysis
    Rebeaud, Severine Gabioud
    Jaylet, Alice
    Cotter, Pierre-Yves
    Camps, Cedric
    Christen, Danilo
    [J]. AGRICULTURE-BASEL, 2019, 9 (04):