Multi-parameter Tikhonov regularization - An augmented approach

被引:8
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ]
Takeuchi, Tomoya [4 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[4] Univ Tokyo, Inst Ind Sci, Collaborat Res Ctr Innovat Math Modelling, Meguro Ku, Tokyo 1538505, Japan
关键词
Multi-parameter regularization; Augmented Tikhonov regularization; Balanced discrepancy principle; CONVEX VARIATIONAL REGULARIZATION; CONVERGENCE-RATES; PARAMETER; SPACES;
D O I
10.1007/s11401-014-0835-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 50 条
  • [21] Multi-parameter regularization and its numerical realization
    Shuai Lu
    Sergei V. Pereverzev
    Numerische Mathematik, 2011, 118 : 1 - 31
  • [22] Impairment localization and quantification using noisy static deformation influence lines and Iterative Multi-parameter Tikhonov Regularization
    Zeinali, Yasha
    Story, Brett A.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 109 : 399 - 419
  • [23] Multi-parameter regularization and its numerical realization
    Lu, Shuai
    Pereverzev, Sergei V.
    NUMERISCHE MATHEMATIK, 2011, 118 (01) : 1 - 31
  • [24] Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times
    Mark Žic
    Sergiy Pereverzyev
    Vanja Subotić
    Sergei Pereverzyev
    GEM - International Journal on Geomathematics, 2020, 11
  • [25] Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times
    Zic, Mark
    Pereverzyev, Sergiy, Jr.
    Subotic, Vanja
    Pereverzyev, Sergei
    GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2020, 11 (01)
  • [26] Multi-parameter regularization method for atmospheric remote sensing
    Doicu, A
    Schreier, F
    Hilgers, S
    Hess, M
    COMPUTER PHYSICS COMMUNICATIONS, 2005, 165 (01) : 1 - 9
  • [27] Seismic acoustic impedance inversion with multi-parameter regularization
    Li, Shu
    Peng, Zhenming
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 14 (03) : 520 - 532
  • [28] A parameter choice method for Tikhonov regularization
    Wu, LM
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2003, 16 : 107 - 128
  • [29] A Tikhonov regularization parameter approach for solving Lagrange constrained optimization problems
    Clempner, Julio B.
    Poznyak, Alexander S.
    ENGINEERING OPTIMIZATION, 2018, 50 (11) : 1996 - 2012
  • [30] Multi-parameter multiplicative regularization: An application to force reconstruction problems
    Aucejo, M.
    De Smet, O.
    JOURNAL OF SOUND AND VIBRATION, 2020, 469