Multi-parameter Tikhonov regularization - An augmented approach

被引:8
|
作者
Ito, Kazufumi [1 ,2 ]
Jin, Bangti [3 ]
Takeuchi, Tomoya [4 ]
机构
[1] N Carolina State Univ, Ctr Res Sci Computat, Raleigh, NC 27695 USA
[2] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[4] Univ Tokyo, Inst Ind Sci, Collaborat Res Ctr Innovat Math Modelling, Meguro Ku, Tokyo 1538505, Japan
关键词
Multi-parameter regularization; Augmented Tikhonov regularization; Balanced discrepancy principle; CONVEX VARIATIONAL REGULARIZATION; CONVERGENCE-RATES; PARAMETER; SPACES;
D O I
10.1007/s11401-014-0835-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 50 条
  • [1] Multi-parameter Tikhonov regularization — An augmented approach
    Kazufumi Ito
    Bangti Jin
    Tomoya Takeuchi
    [J]. Chinese Annals of Mathematics, Series B, 2014, 35 : 383 - 398
  • [2] Multi-parameter Tikhonov Regularization—An Augmented Approach
    Kazufumi ITO
    Bangti JIN
    Tomoya TAKEUCHI
    [J]. Chinese Annals of Mathematics,Series B, 2014, 35 (03) : 383 - 398
  • [3] MULTI-PARAMETER TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2011, 18 (01) : 31 - 46
  • [4] Multi-parameter Tikhonov regularization and model function approach to the damped Morozov principle for choosing regularization parameters
    Wang, Zewen
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (07) : 1815 - 1832
  • [5] Multi-parameter Tikhonov regularization with the l0 sparsity constraint
    Wang, Wei
    Lu, Shuai
    Mao, Heng
    Cheng, Jin
    [J]. INVERSE PROBLEMS, 2013, 29 (06)
  • [6] Tikhonov regularization stabilizes multi-parameter estimation of geothermal heat exchangers
    Du, Yufang
    Li, Min
    Li, Yong
    Lai, Alvin C. K.
    [J]. ENERGY, 2023, 262
  • [7] MULTI-PARAMETER TIKHONOV REGULARIZATION FOR LINEAR ILL-POSED OPERATOR EQUATIONS
    Zhongying Chen Department of Scientific Computing and Computer Applications
    [J]. Journal of Computational Mathematics, 2008, 26 (01) : 37 - 55
  • [8] Multi-parameter Tikhonov regularization for linear ill-posed operator equations
    Chen, Zhongying
    Lu, Yao
    Xu, Yuesheng
    Yang, Hongqi
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (01) : 37 - 55
  • [9] MULTI-PARAMETER ARNOLDI-TIKHONOV METHODS
    Gazzola, Silvia
    Novati, Paolo
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2013, 40 : 452 - 475
  • [10] Augmented Tikhonov regularization
    Jin, Bangti
    Zou, Jun
    [J]. INVERSE PROBLEMS, 2009, 25 (02)