Kernel relative principal component analysis for pattern recognition

被引:0
|
作者
Washizawa, Y [1 ]
Hikida, K
Tanaka, T
Yamashita, Y
机构
[1] Toshiba Solut Corp, Tokyo 1838511, Japan
[2] Texas Instruments Japan Ltd, Wireless Terminals, Tokyo 1608366, Japan
[3] Tokyo Univ Agr & Technol, Dept Elect & Elect Engn, Tokyo 1848588, Japan
[4] RIKEN, Brain Sci Inst, Lab Adv Brain Signal Proc, Wako, Saitama 3510198, Japan
[5] Tokyo Inst Technol, Grad Sch Sci & Engn, Tokyo 1528552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is widely used in signal processing, pattern recognition, etc. PCA was extended to the relative PCA (RPCA). RPCA provides principal components of a signal while suppressing effects of other signals. PCA was also extended to the kernel PCA (KPCA). By using a mapping from the original space to a higher dimensional space and its kernel, we can perform PCA in the higher dimensional space. In this paper, we propose the kernel RPCA (KRPCA) and give its solution. Similarly to KPCA, the order of matrices that we should calculate for the solution is the number of samples, that is 'kernel trick'. We provide experimental results of an application to pattern recognition in order to show the advantages of KRPCA over KPCA.
引用
收藏
页码:1105 / 1113
页数:9
相关论文
共 50 条
  • [41] KERNEL PRINCIPAL COMPONENT ANALYSIS OF THE EAR MORPHOLOGY
    Zolfaghari, Reza
    Epain, Nicolas
    Jin, Craig T.
    Glaunes, Joan
    Tew, Anthony
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 481 - 485
  • [42] Statistical properties of kernel principal component analysis
    Gilles Blanchard
    Olivier Bousquet
    Laurent Zwald
    Machine Learning, 2007, 66 : 259 - 294
  • [43] An Improved Algorithm for Kernel Principal Component Analysis
    Wenming Zheng
    Cairong Zou
    Li Zhao
    Neural Processing Letters, 2005, 22 : 49 - 56
  • [44] Statistical properties of kernel principal component analysis
    Laurent Zwald
    Machine Learning, 2007, 66 : 295 - 295
  • [45] Robust kernel principal component analysis and classification
    Michiel Debruyne
    Tim Verdonck
    Advances in Data Analysis and Classification, 2010, 4 : 151 - 167
  • [46] Supervised kernel principal component analysis for forecasting
    Fang, Puyi
    Gao, Zhaoxing
    Tsay, Ruey S.
    FINANCE RESEARCH LETTERS, 2023, 58
  • [47] Texture classification with kernel principal component analysis
    Kim, KI
    Jung, K
    Park, SH
    Kim, HJ
    ELECTRONICS LETTERS, 2000, 36 (12) : 1021 - 1022
  • [48] Kernel principal component analysis for texture classification
    Kim, KI
    Park, SH
    Kim, HJ
    IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (02) : 39 - 41
  • [49] An improved algorithm for kernel principal component analysis
    Zheng, WM
    Zou, CR
    Zhao, L
    NEURAL PROCESSING LETTERS, 2005, 22 (01) : 49 - 56
  • [50] Exactly Robust Kernel Principal Component Analysis
    Fan, Jicong
    Chow, Tommy W. S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 749 - 761