Kernel relative principal component analysis for pattern recognition

被引:0
|
作者
Washizawa, Y [1 ]
Hikida, K
Tanaka, T
Yamashita, Y
机构
[1] Toshiba Solut Corp, Tokyo 1838511, Japan
[2] Texas Instruments Japan Ltd, Wireless Terminals, Tokyo 1608366, Japan
[3] Tokyo Univ Agr & Technol, Dept Elect & Elect Engn, Tokyo 1848588, Japan
[4] RIKEN, Brain Sci Inst, Lab Adv Brain Signal Proc, Wako, Saitama 3510198, Japan
[5] Tokyo Inst Technol, Grad Sch Sci & Engn, Tokyo 1528552, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is widely used in signal processing, pattern recognition, etc. PCA was extended to the relative PCA (RPCA). RPCA provides principal components of a signal while suppressing effects of other signals. PCA was also extended to the kernel PCA (KPCA). By using a mapping from the original space to a higher dimensional space and its kernel, we can perform PCA in the higher dimensional space. In this paper, we propose the kernel RPCA (KRPCA) and give its solution. Similarly to KPCA, the order of matrices that we should calculate for the solution is the number of samples, that is 'kernel trick'. We provide experimental results of an application to pattern recognition in order to show the advantages of KRPCA over KPCA.
引用
收藏
页码:1105 / 1113
页数:9
相关论文
共 50 条
  • [11] Character Pattern Recognition Algorithm Based on Principal Component Analysis
    Tang Fengxian
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 5313 - 5318
  • [12] SUBSET KERNEL PRINCIPAL COMPONENT ANALYSIS
    Washizawa, Yoshikazu
    2009 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2009, : 357 - 362
  • [13] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [14] Adaptive kernel principal component analysis
    Ding, Mingtao
    Tian, Zheng
    Xu, Haixia
    SIGNAL PROCESSING, 2010, 90 (05) : 1542 - 1553
  • [15] Incremental kernel principal component analysis
    Chin, Tat-Jun
    Suter, David
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (06) : 1662 - 1674
  • [16] Greedy Kernel Principal Component Analysis
    Franc, Vojtech
    Hlavac, Vaclav
    COGNITIVE VISION SYSTEMS: SAMPLING THE SPECTRUM OF APPROACHERS, 2006, 3948 : 87 - 105
  • [17] Sparse kernel principal component analysis
    Tipping, ME
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639
  • [18] Streaming Kernel Principal Component Analysis
    Ghashami, Mina
    Perry, Daniel J.
    Phillips, Jeff M.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1365 - 1374
  • [19] Anomaly Detection Based on Kernel Principal Component and Principal Component Analysis
    Wang, Wei
    Zhang, Min
    Wang, Dan
    Jiang, Yu
    Li, Yuliang
    Wu, Hongda
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2222 - 2228
  • [20] Anomaly detection based on kernel principal component and principal component analysis
    Wang, Wei
    Zhang, Min
    Wang, Dan
    Jiang, Yu
    Li, Yuliang
    Wu, Hongda
    Lecture Notes in Electrical Engineering, 2019, 463 : 2222 - 2228