Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona

被引:12
|
作者
Zhang, Wen-Shuai [1 ]
Cai, Hong-Bo [2 ,3 ,4 ]
Shan, Lian-Qiang [5 ]
Zhang, Hua-Sen [2 ]
Gu, Yu-Qiu [5 ]
Zhu, Shao-Ping [1 ,2 ]
机构
[1] China Acad Engn Phys, Grad Sch, POB 2101, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[3] Peking Univ, Ctr Appl Phys & Technol, HEDPS, Beijing 100871, Peoples R China
[4] Shanghai Jiao Tong Univ, IFSA Collaborat Innovat Ctr, Shanghai 200240, Peoples R China
[5] CAEP, Res Ctr Laser Fus, Sci & Technol Plasma Phys Lab, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
inertial confiement fusion; collisionless shock wave; anomalous neutron yield; fast ignition; IGNITION; SIMULATION;
D O I
10.1088/1741-4326/aa686c
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Observations of anomalous neutron yield in the indirect-drive inertial confinement fusion implosion experiments conducted at SG-III prototype and SG-II upgrade laser facilities are interpreted. The anomalous mechanism results in a neutron yield which is 100-times higher than that predicted by 1D radiation-hydrodynamic simulations. 2D radiation-hydrodynamic simulations show that the supersonic, radially directed gold (Au) plasma jets arising from the laser-hohlraum interactions can collide with the carbon-deuterium (CD) corona plasma of the compressed pellet. It is found that in the interaction front of the high-Z jet with the low-Z corona, with low density similar to 10(20) cm(-3) and high temperature similar to keV, kinetic effects become important. Particle-in-cell simulations indicate that an electrostatic shock wave can be driven when the high-temperature Au jet expands into the low-temperature CD corona. Deuterium ions with an amount of similar to 10(15) can be accelerated to similar to 25 keV by the collisionless shock wave, thus causing efficient neutron productions though the beam-target method by stopping these energetic ions in the corona. The evaluated neutron yield is consistent with the experiments conducted at SG laser facilities.
引用
收藏
页数:7
相关论文
共 29 条
  • [21] Comparison of three hohlraum configurations with six laser entrance holes for indirect-drive inertial confinement fusion
    Jing, Longfei
    Jiang, Shaoen
    Kuang, Longyu
    Li, Hang
    Mang, Lu
    Li, Liling
    Lin, Zhiwei
    Zheng, Jianhua
    Huang, Yunbao
    Huang, Tianxuan
    Ding, Yongkun
    NUCLEAR FUSION, 2018, 58 (09)
  • [22] Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion
    E. Yu. Zarubina
    M. A. Rogozhina
    Physics of Atomic Nuclei, 2022, 85 : 1638 - 1641
  • [23] Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion
    Zarubina, E. Yu.
    Rogozhina, M. A.
    PHYSICS OF ATOMIC NUCLEI, 2022, 85 (10) : 1638 - 1641
  • [24] LARED-Integration code for numerical simulation of the whole processof the indirect-drive laser inertial confinement fusion
    Song, Peng
    Zhai, Chuanlei
    Li, Shuanggui
    Yong, Heng
    Qi, Jin
    Hang, Xudeng
    Yang, Rong
    Cheng, Juan
    Zeng, Qinghong
    Hu, Xiaoyan
    Wang, Shuai
    Shi, Yi
    Zheng, Wudi
    Gu, Peijun
    Zou, Shiyang
    Li, Xin
    Zhao, Yiqing
    Zhang, Huasen
    Zhang, Aiqing
    An, Hengbin
    Li, Jinghong
    Pei, Wenbing
    Zhu, Shaoping
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (03):
  • [25] Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials
    Olson, RE
    Leeper, RJ
    Nobile, A
    Oertel, JA
    Chandler, GA
    Cochrane, K
    Dropinski, SC
    Evans, S
    Haan, SW
    Kaae, JL
    Knauer, JP
    Lash, K
    Mix, LP
    Nikroo, A
    Rochau, GA
    Rivera, G
    Russell, C
    Schroen, D
    Sebring, RJ
    Tanner, DL
    Turner, RE
    Wallace, RJ
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2778 - 2789
  • [26] Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums (vol 106, 085004, 2011)
    Glenzer, S. H.
    MacGowan, B. J.
    Meezan, N. B.
    Adams, P. A.
    Alfonso, J. B.
    Alger, E. T.
    Alherz, Z.
    Alvarez, L. F.
    Alvarez, S. S.
    Amick, P. V.
    Andersson, K. S.
    Andrews, S. D.
    Antonini, G. J.
    Arnold, P. A.
    Atkinson, D. P.
    Auyang, L.
    Azevedo, S. G.
    Balaoing, B. N. M.
    Baltz, J. A.
    Barbosa, F.
    Bardsley, G. W.
    Barker, D. A.
    Barnes, A. I.
    Baron, A.
    Beeler, R. G.
    Beeman, B. V.
    Belk, L. R.
    Bell, J. C.
    Bell, P. M.
    Berger, R. L.
    Bergonia, M. A.
    Bernardez, L. J.
    Berzins, L. V.
    Bettenhausen, R. C.
    Bhandarkar, S. D.
    Bishop, C. L.
    Bond, E. J.
    Bopp, D. R.
    Borgman, J. A.
    Bower, J. R.
    Bowers, G. A.
    Bowers, M. W.
    Boyle, D. T.
    Bradley, D. K.
    Bragg, J. L.
    Braucht, J.
    Brinkerhoff, D. L.
    Browning, D. F.
    Brunton, G. K.
    Burkhart, S. C.
    PHYSICAL REVIEW LETTERS, 2011, 106 (10)
  • [27] Large-scale kinetic simulations of colliding plasmas within a hohlraum of indirect-drive inertial confinement fusion
    Liang, Tianyi
    Wu, Dong
    Ning, Xiaochuan
    Shan, Lianqiang
    Yuan, Zongqiang
    Cai, Hongbo
    Sheng, Zhengmao
    He, Xiantu
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [28] Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive
    MacPhee, A. G.
    Peterson, J. L.
    Casey, D. T.
    Clark, D. S.
    Haan, S. W.
    Jones, O. S.
    Landen, O. L.
    Milovich, J. L.
    Robey, H. F.
    Smalyuk, V. A.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [29] Yield degradation in inertial-confinement-fusion implosions due to shock-driven kinetic fuel-species stratification and viscous heating
    Taitano, W. T.
    Simakov, A. N.
    Chacon, L.
    Keenan, B.
    PHYSICS OF PLASMAS, 2018, 25 (05)