Comparison of three hohlraum configurations with six laser entrance holes for indirect-drive inertial confinement fusion

被引:5
|
作者
Jing, Longfei [1 ]
Jiang, Shaoen [1 ]
Kuang, Longyu [1 ]
Li, Hang [1 ]
Mang, Lu [1 ]
Li, Liling [1 ]
Lin, Zhiwei [1 ]
Zheng, Jianhua [1 ]
Huang, Yunbao [2 ]
Huang, Tianxuan [1 ]
Ding, Yongkun [1 ]
机构
[1] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
[2] Guangdong Univ Technol, Mechatron Sch, Guangzhou 510080, Guangdong, Peoples R China
关键词
inertial confinement fusion; hohlraum configuration; drive symmetry; coupling efficiency; plasma filling; PHYSICS BASIS; IGNITION; IMPLOSIONS; UNIFORMITY; TARGETS;
D O I
10.1088/1741-4326/aacec8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The radiation drive asymmetry and laser-plasma instabilities (LPIs) inside the conventional cylindrical hohlraum configuration are two daunting issues in indirect-drive inertial confinement fusion. Recently, an octahedral spherical hohlraum (SH) (Lan et al 2014 Phys. Plasmas 21 010704), a novel three-axis cylindrical hohlraum (TACH) (Kuang et al 2016 Sci Rep. 6 34636), and an advanced three-axis elliptical hohlraum (TAEH) (Jing et al 2017 arXiv:1703.01579) with six laser entrance holes (LEHs) were proposed to mitigate these issues. In this paper, the performance of these three new hohlraum configurations is compared. Preliminary simulations indicate that the TAEH (with a case-to-capsule ratio, CCR = 2.8) could provide excellent radiation symmetry, comparable to those inside the SH (CCR = 5.1) and TACH (CCR = 2.2). The filling time of plasma affecting the LPIs is between those of the SH and TACH, and about 1.5 times the one in the ignition hohlraum Rev5-CH (300 eV) of the National ignition Campaign (Haan et al 2011 Phys. Plasmas 18 051001). The energy coupling efficiency of the TAEH is about 29% and 17% greater than those inside the SH and TACH, respectively. Moreover, all three configurations have robust symmetry with respect to laser beam pointing errors and capsule offset, with the SH being the most insensitive.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A new ignition hohlraum design for indirect-drive inertial confinement fusion
    Li, Xin
    Wu, Chang-Shu
    Dai, Zhen-Sheng
    Zheng, Wu-Di
    Gu, Jian-Fa
    Gu, Pei-Jun
    Zou, Shi-Yang
    Liu, Jie
    Zhu, Shao-Ping
    [J]. CHINESE PHYSICS B, 2016, 25 (08)
  • [2] A new ignition hohlraum design for indirect-drive inertial confinement fusion
    李欣
    吴畅书
    戴振生
    郑无敌
    谷建法
    古培俊
    邹士阳
    刘杰
    朱少平
    [J]. Chinese Physics B, 2016, 25 (08) : 260 - 264
  • [3] Laser plasma instability in indirect-drive inertial confinement fusion
    Yang Dong
    Li ZhiChao
    Li SanWei
    Hao Liang
    Li Xin
    Guo Liang
    Zou ShiYang
    Jiang XiaoHua
    Peng XiaoShi
    Xu Tao
    Li YuLong
    Zheng ChunYang
    Cai HongBo
    Liu ZhanJun
    Zheng Jian
    Gong Tao
    Wang ZheBin
    Li Hang
    Kuang LongYu
    Li Qi
    Wang Feng
    Liu ShenYe
    Yang JiaMin
    Jiang ShaoEn
    Zhang BaoHan
    Ding YongKun
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (06)
  • [4] Variations of implosion asymmetry with hohlraum length and time in indirect-drive inertial confinement fusion
    Li Hang
    Pu Yu-Dong
    Jing Long-Fei
    Lin Zhi-Wei
    Chen Bo-Lun
    Jiang Wei
    Zhou Jin-Yu
    Huang Tian-Xuan
    Zhang Hai-Ying
    Yu Rui-Zhen
    Zhang Ji-Yan
    Miao Wen-Yong
    Zheng Zhi-Jian
    Cao Zhu-Rong
    Yang Jia-Min
    Liu Shen-Ye
    Jiang Shao-En
    Ding Yong-Kun
    Kuang Long-Yu
    Hu Guang-Yue
    Zheng Jian
    [J]. ACTA PHYSICA SINICA, 2013, 62 (22)
  • [5] Large-scale kinetic simulations of colliding plasmas within a hohlraum of indirect-drive inertial confinement fusion
    Liang, Tianyi
    Wu, Dong
    Ning, Xiaochuan
    Shan, Lianqiang
    Yuan, Zongqiang
    Cai, Hongbo
    Sheng, Zhengmao
    He, Xiantu
    [J]. PHYSICAL REVIEW E, 2024, 109 (03)
  • [6] Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums
    Cai, H. B.
    Shan, L. Q.
    Yuan, Z. Q.
    Zhang, W. S.
    Wang, W. W.
    Tian, C.
    Zhang, F.
    Teng, J.
    Yang, S. Q.
    Tang, Q.
    Song, Z. F.
    Chen, J. B.
    Zhou, W. M.
    Gu, Y. Q.
    Zhang, B. H.
    Zhu, S. P.
    He, X. T.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2020, 36
  • [7] Experimental Evidence of Kinetic Effects in Indirect-Drive Inertial Confinement Fusion Hohlraums
    Shan, L. Q.
    Cai, H. B.
    Zhang, W. S.
    Tang, Q.
    Zhang, F.
    Song, Z. F.
    Bi, B.
    Ge, F. J.
    Chen, J. B.
    Liu, D. X.
    Wang, W. W.
    Yang, Z. H.
    Qi, W.
    Tian, C.
    Yuan, Z. Q.
    Zhang, B.
    Yang, L.
    Jiao, J. L.
    Cui, B.
    Zhou, W. M.
    Cao, L. F.
    Zhou, C. T.
    Gu, Y. Q.
    Zhang, B. H.
    Zhu, S. P.
    He, X. T.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (19)
  • [8] Role of laser beam geometry in improving implosion symmetry and performance for indirect-drive inertial confinement fusion
    Turner, RE
    Amendt, PA
    Landen, OL
    Suter, LJ
    Wallace, RJ
    Hammel, BA
    [J]. PHYSICS OF PLASMAS, 2003, 10 (06) : 2429 - 2432
  • [9] Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles
    Li, C. K.
    Seguin, F. H.
    Frenje, J. A.
    Rosenberg, M.
    Zylstra, A. B.
    Petrasso, R. D.
    Amendt, P. A.
    Koch, J. A.
    Landen, O. L.
    Park, H. S.
    Robey, H. F.
    Town, R. P. J.
    Casner, A.
    Philippe, F.
    Betti, R.
    Knauer, J. P.
    Meyerhofer, D. D.
    Back, C. A.
    Kilkenny, J. D.
    Nikroo, A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (12)
  • [10] Shock-ignition effect in indirect-drive inertial confinement fusion approach
    Gus'kov, S. Yu.
    Vergunova, G. A.
    [J]. PHYSICAL REVIEW E, 2024, 109 (06)