Shock-ignition effect in indirect-drive inertial confinement fusion approach

被引:0
|
作者
Gus'kov, S. Yu. [1 ]
Vergunova, G. A. [1 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Leninskii Prospect 53, Moscow, Russia
关键词
NATIONAL-IGNITION; LASER; COMPRESSION; FACILITY; TARGETS;
D O I
10.1103/PhysRevE.109.065209
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Shock-ignition effect in indirect-drive thermonuclear target is demonstrated on the base of numerical simulations. Thermonuclear gain (in relation to laser pulse energy) of a shock-ignited indirect-drive thermonuclear capsule is obtained, which is 22.5 times higher than that at a traditional spark ignition of the capsule with the same DT-fuel mass, wherein the shock-ignition laser pulse energy is 1.5 times less than the energy of a laser pulse at traditional spark ignition. To implement the shock-ignition effect in indirect-drive target, a rapid increase in radiation temperature is required over several hundred picoseconds at the final stage of thermonuclear capsule implosion. The ability of such a rapid response of radiation temperature to variation in the intensity of an x-ray-producing laser pulse is the main factor in the uncertainty of the degree of manifestation of the shock-ignition effect in an indirect-drive target. This circumstance, first of all, requires experimental study.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A new ignition hohlraum design for indirect-drive inertial confinement fusion
    Li, Xin
    Wu, Chang-Shu
    Dai, Zhen-Sheng
    Zheng, Wu-Di
    Gu, Jian-Fa
    Gu, Pei-Jun
    Zou, Shi-Yang
    Liu, Jie
    Zhu, Shao-Ping
    [J]. CHINESE PHYSICS B, 2016, 25 (08)
  • [2] A new ignition hohlraum design for indirect-drive inertial confinement fusion
    李欣
    吴畅书
    戴振生
    郑无敌
    谷建法
    古培俊
    邹士阳
    刘杰
    朱少平
    [J]. Chinese Physics B, 2016, 25 (08) : 260 - 264
  • [3] Progress in the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Casner, A.
    Nora, R.
    Ribeyre, X.
    Lafon, M.
    Anderson, K. S.
    Betti, R.
    Craxton, R. S.
    Delettrez, J. A.
    Frenje, J. A.
    Glebov, V. Yu.
    Gotchev, O. V.
    Hohenberger, M.
    Hu, S. X.
    Marshall, F. J.
    McCrory, R. L.
    Meyerhofer, D. D.
    Perkins, L. J.
    Sangster, T. C.
    Schurtz, G.
    Seka, W.
    Smalyuk, V. A.
    Stoeckl, C.
    Yaakobi, B.
    [J]. IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [4] DEVELOPMENT OF THE INDIRECT-DRIVE APPROACH TO INERTIAL CONFINEMENT FUSION AND THE TARGET PHYSICS BASIS FOR IGNITION AND GAIN
    LINDL, J
    [J]. PHYSICS OF PLASMAS, 1995, 2 (11) : 3933 - 4024
  • [5] Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums
    Glenzer, S. H.
    MacGowan, B. J.
    Meezan, N. B.
    Adams, P. A.
    Alfonso, J. B.
    Alger, E. T.
    Alherz, Z.
    Alvarez, L. F.
    Alvarez, S. S.
    Amick, P. V.
    Andersson, K. S.
    Andrews, S. D.
    Antonini, G. J.
    Arnold, P. A.
    Atkinson, D. P.
    Auyang, L.
    Azevedo, S. G.
    Balaoing, B. N. M.
    Baltz, J. A.
    Barbosa, F.
    Bardsley, G. W.
    Barker, D. A.
    Barnes, A. I.
    Baron, A.
    Beeler, R. G.
    Beeman, B. V.
    Belk, L. R.
    Bell, J. C.
    Bell, P. M.
    Berger, R. L.
    Bergonia, M. A.
    Bernardez, L. J.
    Berzins, L. V.
    Bettenhausen, R. C.
    Bezerides, L.
    Bhandarkar, S. D.
    Bishop, C. L.
    Bond, E. J.
    Bopp, D. R.
    Borgman, J. A.
    Bower, J. R.
    Bowers, G. A.
    Bowers, M. W.
    Boyle, D. T.
    Bradley, D. K.
    Bragg, J. L.
    Braucht, J.
    Brinkerhoff, D. L.
    Browning, D. F.
    Brunton, G. K.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (08)
  • [6] Initial experiments on the shock-ignition inertial confinement fusion concept
    Theobald, W.
    Betti, R.
    Stoeckl, C.
    Anderson, K. S.
    Delettrez, J. A.
    Glebov, V. Yu.
    Goncharov, V. N.
    Marshall, F. J.
    Maywar, D. N.
    McCrory, R. L.
    Meyerhofer, D. D.
    Radha, P. B.
    Sangster, T. C.
    Seka, W.
    Shvarts, D.
    Smalyuk, V. A.
    Solodov, A. A.
    Yaakobi, B.
    Zhou, C. D.
    Frenje, J. A.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R. D.
    Perkins, L. J.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (05)
  • [7] Preheat effects on shock propagation in indirect-drive inertial confinement fusion ablator materials
    Olson, RE
    Leeper, RJ
    Nobile, A
    Oertel, JA
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (23)
  • [8] Laser plasma instability in indirect-drive inertial confinement fusion
    Yang Dong
    Li ZhiChao
    Li SanWei
    Hao Liang
    Li Xin
    Guo Liang
    Zou ShiYang
    Jiang XiaoHua
    Peng XiaoShi
    Xu Tao
    Li YuLong
    Zheng ChunYang
    Cai HongBo
    Liu ZhanJun
    Zheng Jian
    Gong Tao
    Wang ZheBin
    Li Hang
    Kuang LongYu
    Li Qi
    Wang Feng
    Liu ShenYe
    Yang JiaMin
    Jiang ShaoEn
    Zhang BaoHan
    Ding YongKun
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2018, 48 (06)
  • [9] Temperature dependence of parametric instabilities in the context of the shock-ignition approach to inertial confinement fusion
    S.Weber
    C.Riconda
    [J]. High Power Laser Science and Engineering, 2015, 3 (01) : 51 - 63
  • [10] Design of an Indirect-Drive Pulse Shape for ∼1.6 MJ Inertial Confinement Fusion Ignition Capsules
    Wang Li-Feng
    Wu Jun-Feng
    Ye Wen-Hua
    Fan Zheng-Feng
    He Xian-Tu
    [J]. CHINESE PHYSICS LETTERS, 2014, 31 (04)