SENSITIVITY ANALYSIS FOR DIFFUSION PROCESSES CONSTRAINED TO AN ORTHANT

被引:6
|
作者
Dieker, A. B. [1 ]
Gao, X. [2 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2014年 / 24卷 / 05期
基金
美国国家科学基金会;
关键词
Basic adjoint relationship; constrained diffusion processes; infinitesimal perturbation analysis; queueing networks; reflected Brownian motion; sensitivity analysis; Skorohod reflection map; STATIONARY DISTRIBUTIONS; NETWORKS; APPROXIMATIONS; PERTURBATION; DERIVATIVES; QUEUES;
D O I
10.1214/13-AAP967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies diffusion processes constrained to the positive orthant under infinitesimal changes in the drift. Our first main result states that any constrained function and its (left) drift-derivative is the unique solution to an augmented Skorohod problem. Our second main result uses this characterization to establish a basic adjoint relationship for the stationary distribution of the constrained diffusion process jointly with its left-derivative process.
引用
收藏
页码:1918 / 1945
页数:28
相关论文
共 50 条
  • [31] Bounds on exponential moments of hitting times for reflected processes on the positive orthant
    Lee, Chihoon
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (06) : 1120 - 1128
  • [32] Quantitative Analysis of Resource-Constrained Business Processes
    Oliveira, Cesar Augusto L.
    Lima, Ricardo Massa F.
    Reijers, Hajo A.
    Ribeiro, Joel Tiago S.
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2012, 42 (03): : 669 - 684
  • [33] SENSITIVITY ANALYSIS OF THE ATMOSPHERIC REACTION DIFFUSION EQUATION
    CHO, SY
    CARMICHAEL, GR
    RABITZ, H
    ATMOSPHERIC ENVIRONMENT, 1987, 21 (12) : 2589 - 2598
  • [34] A fast PDE-constrained optimization solver for nonlinear diffusion-reaction processes
    Christiansen, Lasse Hjuler
    Jorgensen, John Bagterp
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2635 - 2640
  • [35] Computational sensitivity analysis for state constrained optimal control problems
    Augustin, D
    Maurer, H
    ANNALS OF OPERATIONS RESEARCH, 2001, 101 (1-4) : 75 - 99
  • [36] Configuration design sensitivity analysis of dynamics for constrained mechanical systems
    Kim, HW
    Bae, DS
    Choi, KK
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (40-41) : 5271 - 5282
  • [37] Addressing Ambiguities in Constrained Sensitivity Analysis for Reactor Physics Problems
    Seo, Jeongwon
    Abdel-Khalik, Hany
    Perko, Zoltan
    NUCLEAR TECHNOLOGY, 2020, 206 (12) : 1827 - 1839
  • [38] Constrained global sensitivity analysis for bioprocess design space identification
    Kotidis, Paylos
    Demis, Panagiotis
    Goey, Cher H.
    Correa, Elisa
    McIntosh, Calum
    Trepekli, Stefania
    Shah, Nilay
    Klymenko, Oleksiy, V
    Kontoravdi, Cleo
    COMPUTERS & CHEMICAL ENGINEERING, 2019, 125 : 558 - 568
  • [39] Computational Sensitivity Analysis for State Constrained Optimal Control Problems
    Dirk Augustin
    Helmut Maurer
    Annals of Operations Research, 2001, 101 : 75 - 99
  • [40] Sensitivity analysis of constrained flexible multibody systems with stability considerations
    Liu, XJ
    MECHANISM AND MACHINE THEORY, 1996, 31 (07) : 859 - 863