SENSITIVITY ANALYSIS FOR DIFFUSION PROCESSES CONSTRAINED TO AN ORTHANT

被引:6
|
作者
Dieker, A. B. [1 ]
Gao, X. [2 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2014年 / 24卷 / 05期
基金
美国国家科学基金会;
关键词
Basic adjoint relationship; constrained diffusion processes; infinitesimal perturbation analysis; queueing networks; reflected Brownian motion; sensitivity analysis; Skorohod reflection map; STATIONARY DISTRIBUTIONS; NETWORKS; APPROXIMATIONS; PERTURBATION; DERIVATIVES; QUEUES;
D O I
10.1214/13-AAP967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies diffusion processes constrained to the positive orthant under infinitesimal changes in the drift. Our first main result states that any constrained function and its (left) drift-derivative is the unique solution to an augmented Skorohod problem. Our second main result uses this characterization to establish a basic adjoint relationship for the stationary distribution of the constrained diffusion process jointly with its left-derivative process.
引用
收藏
页码:1918 / 1945
页数:28
相关论文
共 50 条
  • [21] Modeling errors-preserving constrained sensitivity analysis
    Huang, Dongli
    Abdel-Khalik, Hany
    NUCLEAR ENGINEERING AND DESIGN, 2020, 365
  • [22] Diffusion processes and event history analysis
    Braun, N
    Engelhardt, H
    KOLNER ZEITSCHRIFT FUR SOZIOLOGIE UND SOZIALPSYCHOLOGIE, 1998, 50 (02): : 263 - +
  • [23] Stochastic Analysis of Reaction–Diffusion Processes
    Jifeng Hu
    Hye-Won Kang
    Hans G. Othmer
    Bulletin of Mathematical Biology, 2014, 76 : 854 - 894
  • [24] SYSTEM-ANALYSIS OF DIFFUSION PROCESSES
    KAFAROW, WW
    BOJARINO.AI
    CHEMISCHE TECHNIK, 1974, 26 (08): : 507 - 507
  • [25] Analysis of diffusion processes in a phonon gas
    Khvesyuk, V., I
    Qiao, W.
    Barinov, A. A.
    XXXV SIBERIAN THERMOPHYSICAL SEMINAR, 2019, 2019, 1382
  • [26] USE OF DIFFUSION PROCESSES IN THE ANALYSIS OF RELIABILITY
    IVELEV, V.V.
    1981, V 19 (N 4): : 105 - 110
  • [27] NONLOCAL CONVECTION-DIFFUSION VOLUME-CONSTRAINED PROBLEMS AND JUMP PROCESSES
    Du, Qiang
    Huang, Zhan
    Lehoucq, Richard B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (02): : 373 - 389
  • [28] An ergodic control problem for constrained diffusion processes: Existence of optimal Markov control
    Budhiraja, A
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 532 - 558
  • [29] On positive recurrence of constrained diffusion processes (vol 29, pg 979, 2001)
    Atar, R
    Budhiraja, A
    Dupuis, P
    ANNALS OF PROBABILITY, 2001, 29 (03): : 1404 - 1404
  • [30] NONLOCAL CONVECTION-DIFFUSION VOLUME-CONSTRAINED PROBLEMS AND JUMP PROCESSES
    Du, Qiang
    Huang, Zhan
    Lehoucq, Richard B.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (04): : 961 - 977