SENSITIVITY ANALYSIS FOR DIFFUSION PROCESSES CONSTRAINED TO AN ORTHANT

被引:6
|
作者
Dieker, A. B. [1 ]
Gao, X. [2 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2014年 / 24卷 / 05期
基金
美国国家科学基金会;
关键词
Basic adjoint relationship; constrained diffusion processes; infinitesimal perturbation analysis; queueing networks; reflected Brownian motion; sensitivity analysis; Skorohod reflection map; STATIONARY DISTRIBUTIONS; NETWORKS; APPROXIMATIONS; PERTURBATION; DERIVATIVES; QUEUES;
D O I
10.1214/13-AAP967
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies diffusion processes constrained to the positive orthant under infinitesimal changes in the drift. Our first main result states that any constrained function and its (left) drift-derivative is the unique solution to an augmented Skorohod problem. Our second main result uses this characterization to establish a basic adjoint relationship for the stationary distribution of the constrained diffusion process jointly with its left-derivative process.
引用
收藏
页码:1918 / 1945
页数:28
相关论文
共 50 条
  • [1] Risk-Sensitive Ergodic Control of Reflected Diffusion Processes in Orthant
    Somnath Pradhan
    Applied Mathematics & Optimization, 2021, 83 : 1739 - 1764
  • [2] Risk-Sensitive Ergodic Control of Reflected Diffusion Processes in Orthant
    Pradhan, Somnath
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1739 - 1764
  • [3] On positive recurrence of constrained diffusion processes
    Atar, R
    Budhiraja, A
    Dupuis, P
    ANNALS OF PROBABILITY, 2001, 29 (02): : 979 - 1000
  • [4] SENSITIVITY ANALYSIS OF PARTIAL-DIFFERENTIAL EQUATIONS WITH APPLICATION TO REACTION AND DIFFUSION PROCESSES
    KODA, M
    DOGRU, AH
    SEINFELD, JH
    JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 30 (02) : 259 - 282
  • [5] SENSITIVITY ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS
    BESTLE, D
    SEYBOLD, J
    ARCHIVE OF APPLIED MECHANICS, 1992, 62 (03) : 181 - 190
  • [6] Sensitivity Analysis in Constrained Evolutionary Optimization
    Schulte, Julian
    Nissen, Volker
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 894 - 902
  • [7] Sensitivity Analysis for Jump Processes
    Takeuchi, Atsushi
    STOCHASTIC ANALYSIS WITH FINANCIAL APPLICATIONS, HONG KONG 2009, 2011, 65 : 207 - 219
  • [8] Surprisal analysis of diffusion processes
    Saravanan, Rajendran
    Levine, R. D.
    CHEMICAL PHYSICS, 2022, 556
  • [9] Stochastic analysis and diffusion processes
    Applebaum, Dave
    MATHEMATICAL GAZETTE, 2014, 98 (543): : 568 - 570
  • [10] SENSITIVITY ANALYSIS FOR NONLINEAR CONSTRAINED ELASTOSTATIC SYSTEMS
    TORTORELLI, DA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1992, 33 (08) : 1643 - 1660