Sampling expansion in function spaces associated with the linear canonical transform

被引:3
|
作者
Liu, Xiaoping [1 ]
Shi, Jun [1 ]
Sha, Xuejun [1 ]
Zhang, Naitong [1 ,2 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical transform; Riesz bases; Frames; Function spaces; Sampling theorem; BAND-LIMITED SIGNALS; RECONSTRUCTION; DOMAIN;
D O I
10.1007/s11760-013-0507-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate sampling expansion for the linear canonical transform (LCT) in function spaces. First, some properties of the function spaces related to the LCT are obtained. Then, a sampling theorem for the LCT in function spaces with a single-frame generator is derived by using the Zak Transform and its generalization to the LCT domain. Some examples are also presented.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 50 条
  • [21] On Sampling of Band-Limited Signals Associated With the Linear Canonical Transform
    Tao, Ran
    Li, Bing-Zhao
    Wang, Yue
    Agarey, George Kwainina
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (11) : 5454 - 5464
  • [22] Linear canonical wavelet transform and linear canonical wave packet transform on the Schwartz type spaces
    Rejini, M. Thanga
    Moorthy, R. Subash
    [J]. JOURNAL OF ANALYSIS, 2023,
  • [23] Linear canonical ambiguity function and linear canonical transform moments
    Zhao, Hui
    Ran, Qi-Wen
    Ma, Jing
    Tan, Li-Ying
    [J]. OPTIK, 2011, 122 (06): : 540 - 543
  • [24] Sampling rate conversion for linear canonical transform
    Zhao, Juan
    Tao, Ran
    Wang, Yue
    [J]. SIGNAL PROCESSING, 2008, 88 (11) : 2825 - 2832
  • [25] Additional sampling criterion for the linear canonical transform
    Healy, John J.
    Hennelly, Bryan M.
    Sheridan, John T.
    [J]. OPTICS LETTERS, 2008, 33 (22) : 2599 - 2601
  • [26] Vector Sampling Expansions and Linear Canonical Transform
    Sharma, K. K.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (10) : 583 - 586
  • [27] Novel Wigner distribution and ambiguity function associated with the linear canonical transform
    Zhang, Zhi-Chao
    [J]. OPTIK, 2016, 127 (12): : 4995 - 5012
  • [28] Kernel Function-τ-Wigner Distribution Associated With the Linear Canonical Transform
    Zhang, Zhichao
    Shi, Xiya
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1764 - 1768
  • [29] The Spectrogram Associated with the Linear Canonical Transform
    Zhao Zhi-Chun
    Li Bing-Zhao
    [J]. PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1242 - 1245
  • [30] New sampling formulae related to linear canonical transform
    Li, Bing-Zhao
    Tao, Ran
    Wang, Yue
    [J]. SIGNAL PROCESSING, 2007, 87 (05) : 983 - 990