Sampling expansion in function spaces associated with the linear canonical transform

被引:3
|
作者
Liu, Xiaoping [1 ]
Shi, Jun [1 ]
Sha, Xuejun [1 ]
Zhang, Naitong [1 ,2 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical transform; Riesz bases; Frames; Function spaces; Sampling theorem; BAND-LIMITED SIGNALS; RECONSTRUCTION; DOMAIN;
D O I
10.1007/s11760-013-0507-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate sampling expansion for the linear canonical transform (LCT) in function spaces. First, some properties of the function spaces related to the LCT are obtained. Then, a sampling theorem for the LCT in function spaces with a single-frame generator is derived by using the Zak Transform and its generalization to the LCT domain. Some examples are also presented.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 50 条
  • [11] The linear canonical wavelet transform on some function spaces
    Guo, Yong
    Li, Bing-Zhao
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (01)
  • [12] The ambiguity function associated with the linear canonical transform
    Che, Tian-Wen
    Li, Bing-Zhao
    Xu, Tian-Zhou
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2012,
  • [13] The ambiguity function associated with the linear canonical transform
    Che Tian-Wen
    Li Bing-Zhao
    Xu Tian-Zhou
    [J]. EURASIP Journal on Advances in Signal Processing, 2012
  • [14] Periodically Nonuniform Averaging and Reconstruction of Signals in Function Spaces Associated with the Linear Canonical Transform
    Wang W.-J.
    Cai X.-Y.
    Wang J.-T.
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2020, 40 (11): : 1238 - 1244
  • [15] The dual extensions of sampling and series expansion theorems for the linear canonical transform
    Wei, Deyun
    Li, Yuan-Min
    [J]. OPTIK, 2015, 126 (24): : 5163 - 5167
  • [16] Multichannel Consistent Sampling and Reconstruction Associated With Linear Canonical Transform
    Xu, Liyun
    Tao, Ran
    Zhang, Feng
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) : 658 - 662
  • [17] Generalized Gabor expansion associated with linear canonical transform series
    Wei, Deyun
    Li, Yuan-Min
    [J]. OPTIK, 2014, 125 (16): : 4394 - 4397
  • [18] Sampling in the Linear Canonical Transform Domain
    Li, Bing-Zhao
    Xu, Tian-Zhou
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [19] Sampling and discretization of the linear canonical transform
    Healy, John J.
    Sheridan, John T.
    [J]. SIGNAL PROCESSING, 2009, 89 (04) : 641 - 648
  • [20] Multichannel sampling expansion in the linear canonical transform domain and its application to superresolution
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    [J]. OPTICS COMMUNICATIONS, 2011, 284 (23) : 5424 - 5429