Sampling expansion in function spaces associated with the linear canonical transform

被引:3
|
作者
Liu, Xiaoping [1 ]
Shi, Jun [1 ]
Sha, Xuejun [1 ]
Zhang, Naitong [1 ,2 ]
机构
[1] Harbin Inst Technol, Commun Res Ctr, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical transform; Riesz bases; Frames; Function spaces; Sampling theorem; BAND-LIMITED SIGNALS; RECONSTRUCTION; DOMAIN;
D O I
10.1007/s11760-013-0507-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we investigate sampling expansion for the linear canonical transform (LCT) in function spaces. First, some properties of the function spaces related to the LCT are obtained. Then, a sampling theorem for the LCT in function spaces with a single-frame generator is derived by using the Zak Transform and its generalization to the LCT domain. Some examples are also presented.
引用
收藏
页码:143 / 148
页数:6
相关论文
共 50 条
  • [1] Sampling expansion in function spaces associated with the linear canonical transform
    Xiaoping Liu
    Jun Shi
    Xuejun Sha
    Naitong Zhang
    [J]. Signal, Image and Video Processing, 2014, 8 : 143 - 148
  • [2] Sampling and Reconstruction of Signals in Function Spaces Associated With the Linear Canonical Transform
    Shi, Jun
    Liu, Xiaoping
    Sha, Xuejun
    Zhang, Naitong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 6041 - 6047
  • [3] Sampling theorems in function spaces for frames associated with linear canonical transform
    Shi, Jun
    Liu, Xiaoping
    Zhang, Qinyu
    Zhang, Naitong
    [J]. SIGNAL PROCESSING, 2014, 98 : 88 - 95
  • [4] Periodically Nonuniform Sampling and Reconstruction of Signals in Function Spaces Associated With the Linear Canonical Transform
    Wang, Jiatong
    Ren, Shiwei
    Chen, Zhiming
    Wang, Weijiang
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (04) : 756 - 759
  • [5] Sampling and series expansion for linear canonical transform
    Deyun Wei
    Yuan-Min Li
    [J]. Signal, Image and Video Processing, 2014, 8 : 1095 - 1101
  • [6] Sampling and series expansion for linear canonical transform
    Wei, Deyun
    Li, Yuan-Min
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 (06) : 1095 - 1101
  • [7] Sampling and Reconstruction in Arbitrary Measurement and Approximation Spaces Associated With Linear Canonical Transform
    Shi, Jun
    Liu, Xiaoping
    He, Lei
    Han, Mo
    Li, Qingzhong
    Zhang, Naitong
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (24) : 6379 - 6391
  • [8] Generalized sampling expansion for the quaternion linear canonical transform
    Siddiqui, Saima
    Li, Bing-Zhao
    Samad, Muhammad Adnan
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 345 - 354
  • [9] Aliased polyphase sampling associated with the linear canonical transform
    Zhu, M.
    Li, B.-Z.
    Yan, G.-F.
    [J]. IET SIGNAL PROCESSING, 2012, 6 (06) : 594 - 599
  • [10] New Sampling Formulae Associated with the Linear Canonical Transform
    Li, Bing-zhao
    Tao, Ran
    Wang, Yue
    [J]. 2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 37 - +