AN ARTIFICIAL NEURAL NETWORK IN SHORT-TERM ELECTRICAL LOAD FORECASTING OF A UNIVERSITY CAMPUS: A CASE STUDY

被引:0
|
作者
Palchak, David [1 ]
Suryanarayanan, Siddharth [2 ]
Zimmerle, Daniel [3 ]
机构
[1] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Engines & Energy Convers Lab, Ft Collins, CO 80523 USA
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an artificial neural network (ANN) for forecasting the short-term electrical load of a university campus using real historical data from Colorado State University. A spatio-temporal ANN model with multiple weather variables as well as time identifiers, such as day of week and time of day, are used as inputs to the network presented. The choice of the number of hidden neurons in the network is made using statistical information and taking into account the point of diminishing returns. The performance of this ANN is quantified using three error metrics: the mean average percent error (MAPE); the error in the ability to predict the occurrence of the daily peak hour; and the difference in electrical energy consumption between the predicted and the actual values in a 24-hour period. These error measures provide a good indication of the constraints and applicability of these predictions. In the presence of some enabling technologies such as energy storage, rescheduling of non-critical loads, and availability of time of use (ToU) pricing, the possible DSM options that could stem from an accurate prediction of energy consumption of a campus include the identification of anomalous events as well the management of usage.
引用
收藏
页码:707 / +
页数:3
相关论文
共 50 条
  • [41] Short-Term Load Forecasting Using an LSTM Neural Network
    Hossain, Mohammad Safayet
    Mahmood, Hisham
    2020 IEEE POWER AND ENERGY CONFERENCE AT ILLINOIS (PECI), 2020,
  • [42] Short-Term Load Forecasting Using Hybrid Neural Network
    Nadeem, Muhammad
    Altaf, Muhammad
    Ahmad, Ayaz
    INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2021, 12 (01) : 142 - 156
  • [43] Hybrid neural network model for short-term load forecasting
    Yin, Chengqun
    Kang, Lifeng
    Sun, Wei
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 408 - +
  • [44] SHORT-TERM LOAD FORECASTING USING AN ADAPTIVE NEURAL NETWORK
    DILLON, TS
    SESTITO, S
    LEUNG, S
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1991, 13 (04) : 186 - 192
  • [45] Short-term load forecasting using Fuzzy Neural Network
    Shao, S
    Sun, YM
    FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN POWER SYSTEM CONTROL, OPERATION & MANAGEMENT, VOLS 1 AND 2, 1997, : 131 - 134
  • [46] Short-term load forecasting based on fuzzy neural network
    Wang, Cuiru
    Cui, Zhikun
    Chen, Qi
    IITA 2007: WORKSHOP ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, PROCEEDINGS, 2007, : 335 - 338
  • [47] Application of RBF Neural Network in Short-Term Load Forecasting
    Liang, Yongchun
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 1 - 9
  • [48] Short-term Load Forecasting Based on BP Neural Network
    Li Yan-bin
    Li Peng
    Li Guan-hong
    ICPOM2008: PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE OF PRODUCTION AND OPERATION MANAGEMENT, VOLUMES 1-3, 2008, : 1182 - 1186
  • [49] Power System Short-term Load Forecasting Based on Neural Network with Artificial Immune Algorithm
    Huang Yue
    Li Dan
    Gao Liqun
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 844 - 848
  • [50] WEATHER SENSITIVE SHORT-TERM LOAD FORECASTING USING NONFULLY CONNECTED ARTIFICIAL NEURAL NETWORK
    CHEN, ST
    YU, DC
    MOGHADDAMJO, AR
    LU, CN
    VEMURI, S
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1992, 7 (03) : 1098 - 1105