AN ARTIFICIAL NEURAL NETWORK IN SHORT-TERM ELECTRICAL LOAD FORECASTING OF A UNIVERSITY CAMPUS: A CASE STUDY

被引:0
|
作者
Palchak, David [1 ]
Suryanarayanan, Siddharth [2 ]
Zimmerle, Daniel [3 ]
机构
[1] Colorado State Univ, Dept Mech Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[3] Colorado State Univ, Engines & Energy Convers Lab, Ft Collins, CO 80523 USA
关键词
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an artificial neural network (ANN) for forecasting the short-term electrical load of a university campus using real historical data from Colorado State University. A spatio-temporal ANN model with multiple weather variables as well as time identifiers, such as day of week and time of day, are used as inputs to the network presented. The choice of the number of hidden neurons in the network is made using statistical information and taking into account the point of diminishing returns. The performance of this ANN is quantified using three error metrics: the mean average percent error (MAPE); the error in the ability to predict the occurrence of the daily peak hour; and the difference in electrical energy consumption between the predicted and the actual values in a 24-hour period. These error measures provide a good indication of the constraints and applicability of these predictions. In the presence of some enabling technologies such as energy storage, rescheduling of non-critical loads, and availability of time of use (ToU) pricing, the possible DSM options that could stem from an accurate prediction of energy consumption of a campus include the identification of anomalous events as well the management of usage.
引用
收藏
页码:707 / +
页数:3
相关论文
共 50 条
  • [31] Short-Term Load Forecasting for a Captive Power Plant Using Artificial Neural Network
    Tiwari, Vidhi
    Pal, Kirti
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [32] A Comparative Study of Artificial Neural Network and ANFIS for Short Term Load Forecasting
    Cevik, Hasan Huseyin
    Cunkas, Mehmet
    PROCEEDINGS OF THE 2014 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2014,
  • [33] An approach to short-term load forecasting based on wavelet transform and artificial neural network
    Xu, Jun-Hua
    Liu, Tian-Qi
    Power System Technology, 2004, 28 (08) : 30 - 33
  • [34] Two-Stage Artificial Neural Network Model for Short-Term Load Forecasting
    Hsu, Yuan-Yu
    Tung, Tao-Ting
    Yeh, Hung-Chih
    Lu, Chan-Nan
    IFAC PAPERSONLINE, 2018, 51 (28): : 678 - 683
  • [35] A REAL-TIME SHORT-TERM LOAD FORECASTING SYSTEM BY ARTIFICIAL NEURAL NETWORK
    陈钧
    吴捷
    华南理工大学学报(自然科学版), 1998, (11) : 144 - 149
  • [36] Short-Term Load Forecasting Using Hybrid ARIMA and Artificial Neural Network Model
    Singhal, Rahul
    Choudhary, Niraj Kumar
    Singh, Nitin
    ADVANCES IN VLSI, COMMUNICATION, AND SIGNAL PROCESSING, 2020, 587 : 935 - 947
  • [37] A spiking neural network (SNN) forecast engine for short-term electrical load forecasting
    Kulkarni, Santosh
    Simon, Sishaj P.
    Sundareswaran, K.
    APPLIED SOFT COMPUTING, 2013, 13 (08) : 3628 - 3635
  • [38] Short-term load forecasting using artificial immune network
    You, Y
    Wang, SA
    Sheng, WX
    POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 2322 - 2325
  • [39] Short-Term Load Forecasting Based on RBF Neural Network
    Zhao, Bing
    Liang, Yue
    Gao, Xin
    Liu, Xin
    3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2018), 2018, 1069
  • [40] Neural Network Based Approach for Short-Term Load Forecasting
    Osman, Zainab H.
    Awad, Mohamed L.
    Mahmoud, Tawfik K.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1162 - +