Higher order Melnikov function for a quartic Hamiltonian with cuspidal loop

被引:0
|
作者
Zhao, YL [1 ]
Zhu, SM [1 ]
机构
[1] Zhongshan Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
Abelian integrals; k-th order Melnikov function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the polynomial perturbations of Hamiltonian vector field X-epsilon = (H-y + kappaf(x, y, epsilon))partial derivative/partial derivativex + (-H-x + epsilong(x, y, epsilon))partial derivative/partial derivativey, where the Hamiltonian H(x, y) = 1/2 y(2) + U(x) has one center and one cuspidal loop, deg U(x) = 4. In present paper we find an upper bound for the number of zeros of the kth order Melnikov function M-k(h) for arbitrary polynomials f (x, y, e) and g(x, y, epsilon).
引用
收藏
页码:995 / 1018
页数:24
相关论文
共 50 条
  • [41] Higher order complex Lagrangian and Hamiltonian mechanics systems
    Tekkoyun, M.
    Gorgulu, A.
    PHYSICS LETTERS A, 2006, 357 (4-5) : 261 - 269
  • [42] PERTURBATIVE HAMILTONIAN CONSTRAINTS FOR HIGHER-ORDER THEORIES
    Martinez, S. A.
    Montemayor, R.
    Urrutia, L. F.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (26): : 4661 - 4686
  • [43] TRANSVERSE HOMOCLINIC ORBIT BIFURCATED FROM A HOMOCLINIC MANIFOLD BY THE HIGHER ORDER MELNIKOV INTEGRALS
    Long, Bin
    Zhu, Changrong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (04): : 1651 - 1665
  • [44] Higher-order quantum transformations of Hamiltonian dynamics
    Odake, Tatsuki
    Kristjansson, Hler
    Soeda, Akihito
    Murao, Mio
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [45] Higher Order Hamiltonian Systems with Generalized Legendre Transformation
    Smetanova, Dana
    MATHEMATICS, 2018, 6 (09)
  • [46] HIGHER-ORDER HYPERFINE TERMS IN SPIN HAMILTONIAN
    GOLDING, RM
    STUBBS, LC
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 362 (1711): : 525 - 536
  • [47] Fractional Hamiltonian analysis of higher order derivatives systems
    Baleanu, Dumitru
    Muslih, Sami I.
    Tas, Kenan
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
  • [48] The third order melnikov function of a cubic integrable system under quadratic perturbations
    Asheghi, R.
    Nabavi, A.
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [49] The number of limit cycles from a cubic center by the Melnikov function of any order
    Yang, Peixing
    Yu, Jiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (04) : 1463 - 1494