Higher order Melnikov function for a quartic Hamiltonian with cuspidal loop

被引:0
|
作者
Zhao, YL [1 ]
Zhu, SM [1 ]
机构
[1] Zhongshan Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
Abelian integrals; k-th order Melnikov function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the polynomial perturbations of Hamiltonian vector field X-epsilon = (H-y + kappaf(x, y, epsilon))partial derivative/partial derivativex + (-H-x + epsilong(x, y, epsilon))partial derivative/partial derivativey, where the Hamiltonian H(x, y) = 1/2 y(2) + U(x) has one center and one cuspidal loop, deg U(x) = 4. In present paper we find an upper bound for the number of zeros of the kth order Melnikov function M-k(h) for arbitrary polynomials f (x, y, e) and g(x, y, epsilon).
引用
收藏
页码:995 / 1018
页数:24
相关论文
共 50 条