Higher order Melnikov function for a quartic Hamiltonian with cuspidal loop

被引:0
|
作者
Zhao, YL [1 ]
Zhu, SM [1 ]
机构
[1] Zhongshan Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
关键词
Abelian integrals; k-th order Melnikov function;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the polynomial perturbations of Hamiltonian vector field X-epsilon = (H-y + kappaf(x, y, epsilon))partial derivative/partial derivativex + (-H-x + epsilong(x, y, epsilon))partial derivative/partial derivativey, where the Hamiltonian H(x, y) = 1/2 y(2) + U(x) has one center and one cuspidal loop, deg U(x) = 4. In present paper we find an upper bound for the number of zeros of the kth order Melnikov function M-k(h) for arbitrary polynomials f (x, y, e) and g(x, y, epsilon).
引用
收藏
页码:995 / 1018
页数:24
相关论文
共 50 条
  • [1] Some properties of Melnikov functions near a cuspidal loop
    Yang, Junmin
    Han, Maoan
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (04) : 767 - 786
  • [2] Some properties of Melnikov functions near a cuspidal loop
    Junmin Yang
    Maoan Han
    Science China Mathematics, 2024, 67 : 767 - 786
  • [3] Some properties of Melnikov functions near a cuspidal loop
    Junmin Yang
    Maoan Han
    Science China(Mathematics), 2024, 67 (04) : 767 - 786
  • [4] Limit cycle bifurcation by perturbing a cuspidal loop of order 2 in a Hamiltonian system
    Atabaigi, Ali
    Zangeneh, Hamid R. Z.
    Kazemi, Rasool
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1945 - 1958
  • [5] THE NUMBER OF LIMIT CYCLES FROM A QUARTIC CENTER BY THE HIGHER-ORDER MELNIKOV FUNCTIONS
    Liu, Xia
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1405 - 1421
  • [6] Limit Cycle Bifurcations by Perturbing a Hamiltonian System with a Cuspidal Loop of Order m
    Xiong, Yanqing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (06):
  • [7] THE NUMBER OF LIMIT CYCLES FROM ELLIPTIC HAMILTONIAN VECTOR FIELDS BY HIGHER ORDER MELNIKOV FUNCTIONS
    Liu, Xia
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1239 - 1254
  • [8] HIGHER-ORDER MELNIKOV METHOD
    郭友中
    刘曾荣
    江霞妹
    韩志斌
    AppliedMathematicsandMechanics(EnglishEdition), 1991, (01) : 21 - 32
  • [9] A note on higher order Melnikov functions
    Jebrane A.
    Zolładek H.
    Qualitative Theory of Dynamical Systems, 2005, 6 (2) : 273 - 287
  • [10] Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system
    Han, Maoan
    Zang, Hong
    Yang, Junmin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 129 - 163