Analysis of stochastic bifurcation and chaos in stochastic Duffing-van der Pol system via Chebyshev polynomial approximation

被引:20
|
作者
Ma Shao-Juan [1 ]
Xu Wei
Li Wei
Fang Tong
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
[2] Second NW Univ Nationalities, Dept Informat & Computat Sci, Yinchuan 750021, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 06期
关键词
stochastic Duffing-van der Pol system; Chebyshev polynomial approximation; stochastic period-doubling bifurcation; stochastic chaos;
D O I
10.1088/1009-1963/15/6/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
引用
收藏
页码:1231 / 1238
页数:8
相关论文
共 50 条
  • [1] Stochastic Hopf bifurcation and chaos of stochastic Bonhoeffer-van der Pol system via Chebyshev polynomial approximation
    Zhang, Ying
    Xu, Wei
    Fang, Tong
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1225 - 1236
  • [2] Stochastic bifurcation in Duffing-van der Pol oscillators
    He, Q
    Xu, W
    Rong, HW
    Fang, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 319 - 334
  • [3] Symmetry-breaking bifurcation analysis of stochastic van der pol system via Chebyshev polynomial approximation
    Ma, Shaojuan
    Xu, Wei
    Jin, Yanfei
    Li, Wei
    Fang, Tong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (03) : 366 - 378
  • [4] Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation
    Ma, SJ
    Xu, W
    Li, W
    Jin, YF
    ACTA PHYSICA SINICA, 2005, 54 (08) : 3508 - 3515
  • [5] Chebyshev polynomial approximation for bifurcation analysis of stochastic coupled Duffing system
    Sun, Xiaojuan
    Lu, Qishao
    Xu, Wei
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 71 - 75
  • [6] Chaos analysis for a class of impulse Duffing-van der Pol system
    Li, Shuqun
    Zhou, Liangqiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (05): : 395 - 403
  • [7] Numerical solutions of stochastic Duffing-Van der Pol equations
    Hamed, Maha
    El-Kalla, I. L.
    El-Beltagy, Mohamed A.
    El-desouky, Beih S.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (01): : 256 - 273
  • [8] Stochastic averaging and asymptotic behavior of the stochastic Duffing-van der Pol equation
    Baxendale, PH
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 113 (02) : 235 - 272
  • [9] Numerical solutions of stochastic Duffing-Van der Pol equations
    Maha hamed
    I. L. El-Kalla
    Mohamed A. El-Beltagy
    Beih S. El-desouky
    Indian Journal of Pure and Applied Mathematics, 2024, 55 : 256 - 273
  • [10] Filtering for a Duffing-van der Pol stochastic differential equation
    Patel, Hiren G.
    Sharma, Shambhu N.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 : 386 - 397