Chaos analysis for a class of impulse Duffing-van der Pol system

被引:1
|
作者
Li, Shuqun [1 ,2 ]
Zhou, Liangqiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
[2] MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
chaos; Duffing-van der Pol system; homoclinic orbit; Melnikov method; BEHAVIOR;
D O I
10.1515/zna-2023-0005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chaotic dynamics of an impulse Duffing-van der Pol system is studied in this paper. With the Melnikov method, the existence condition of transversal homoclinic point is obtained, and chaos threshold is presented. In addition, numerical simulations including phase portraits and time histories are carried out to verify the analytical results. Bifurcation diagrams are also given, from which it can be seen that the system may undergo chaotic motions through period doubling bifurcations.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [1] A fuzzy crisis in a Duffing-van der Pol system
    洪灵
    Chinese Physics B, 2010, (03) : 186 - 191
  • [2] A Fuzzy Crisis in a Duffing-Van der Pol System
    Hong, Ling
    Sun, Jian-Qiao
    NONLINEAR SCIENCE AND COMPLEXITY, 2011, : 419 - 424
  • [3] A fuzzy crisis in a Duffing-van der Pol system
    Hong Ling
    CHINESE PHYSICS B, 2010, 19 (03)
  • [4] Investigation on Dynamics of the Extended Duffing-Van der Pol System
    Yu, Jun
    Li, Jieru
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (5-6): : 341 - 346
  • [5] CONTROLLING OF CHAOS BY WEAK PERIODIC PERTURBATIONS IN DUFFING-VAN DER POL OSCILLATOR
    RAJASEKAR, S
    PRAMANA-JOURNAL OF PHYSICS, 1993, 41 (04): : 295 - 309
  • [6] Bursting oscillation and mechanism analysis of a class of Duffing-Van der Pol system with two excitation terms
    Qian, Youhua
    Zhang, Danjin
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (11):
  • [7] Analysis of stochastic bifurcation and chaos in stochastic Duffing-van der Pol system via Chebyshev polynomial approximation
    Ma Shao-Juan
    Xu Wei
    Li Wei
    Fang Tong
    CHINESE PHYSICS, 2006, 15 (06): : 1231 - 1238
  • [8] Stochastic bifurcation in Duffing-van der Pol oscillators
    He, Q
    Xu, W
    Rong, HW
    Fang, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 338 (3-4) : 319 - 334
  • [9] Complex dynamics in Duffing-Van der Pol equation
    Jing, ZJ
    Yang, ZY
    Jiang, T
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 722 - 747
  • [10] Suppressing chaos through optimum correction of the control parameters in a Duffing-van der Pol oscillator
    Talagaev, Yu. V.
    Tarakanov, A. F.
    TECHNICAL PHYSICS LETTERS, 2006, 32 (12) : 1043 - 1046