Chaos analysis for a class of impulse Duffing-van der Pol system

被引:1
|
作者
Li, Shuqun [1 ,2 ]
Zhou, Liangqiang [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
[2] MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
chaos; Duffing-van der Pol system; homoclinic orbit; Melnikov method; BEHAVIOR;
D O I
10.1515/zna-2023-0005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chaotic dynamics of an impulse Duffing-van der Pol system is studied in this paper. With the Melnikov method, the existence condition of transversal homoclinic point is obtained, and chaos threshold is presented. In addition, numerical simulations including phase portraits and time histories are carried out to verify the analytical results. Bifurcation diagrams are also given, from which it can be seen that the system may undergo chaotic motions through period doubling bifurcations.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [31] Control and synchronization in the Duffing-van der Pol and F6 Duffing oscillators
    Uriostegui-Legorreta, U.
    Tututi, E. S.
    INDIAN JOURNAL OF PHYSICS, 2023, 97 (14) : 4303 - 4315
  • [32] Heteroclinic Bifurcation Analysis of Duffing-Van der Pol System by the Hyperbolic Lindstedt-Poincare Method
    Chen, Yangyang
    Yan, Lewei
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 2654 - +
  • [33] Statistical dynamics at critical bifurcations in Duffing-van der Pol oscillator
    Chinnathambi, V
    Rajasekar, S
    PRAMANA-JOURNAL OF PHYSICS, 1999, 52 (06): : 561 - 577
  • [34] Stochastic averaging on graphs: Noisy Duffing-van der Pol equation
    Namachchivaya, NS
    Sowers, R
    Vedula, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 255 - 265
  • [35] Response of a stochastic Duffing-Van der Pol elastic impact oscillator
    Wang, Liang
    Xu, Wei
    Li, Gaojie
    Li, Dongxi
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 2075 - 2080
  • [36] HOMOTOPY PERTURBATION METHOD TO SOLVE DUFFING-VAN DER POL EQUATION
    Moussa, Bagayogo
    Youssouf, Minoungou
    Wassiha, Nebie Abdoul
    Youssouf, Pare
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (03): : 299 - 315
  • [37] Statistical dynamics at critical bifurcations in Duffing-van der Pol oscillator
    V. Chinnathambi
    S. Rajasekar
    Pramana, 1999, 52 : 561 - 577
  • [38] Resonance Analysisfor Weakly Nonlinear Duffing-van der Pol Oscillation
    Chen, Songlin
    Wang, Nannan
    IAENG International Journal of Applied Mathematics, 2024, 54 (02) : 238 - 242
  • [39] Complex Dynamics in a Duffing-Van der Pol Oscillator with φ6 Potential
    Yu, Jun
    Xie, Zhi-kun
    Yu, Li-xian
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (11)
  • [40] Stochastic stability and control of coupled Duffing-van der Pol systems
    Li, W
    Xu, W
    Zhao, JF
    Jin, YF
    ACTA PHYSICA SINICA, 2005, 54 (12) : 5559 - 5565