Analysis of stochastic bifurcation and chaos in stochastic Duffing-van der Pol system via Chebyshev polynomial approximation

被引:20
|
作者
Ma Shao-Juan [1 ]
Xu Wei
Li Wei
Fang Tong
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
[2] Second NW Univ Nationalities, Dept Informat & Computat Sci, Yinchuan 750021, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 06期
关键词
stochastic Duffing-van der Pol system; Chebyshev polynomial approximation; stochastic period-doubling bifurcation; stochastic chaos;
D O I
10.1088/1009-1963/15/6/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
引用
收藏
页码:1231 / 1238
页数:8
相关论文
共 50 条
  • [31] A Fuzzy Crisis in a Duffing-Van der Pol System
    Hong, Ling
    Sun, Jian-Qiao
    NONLINEAR SCIENCE AND COMPLEXITY, 2011, : 419 - 424
  • [32] A fuzzy crisis in a Duffing-van der Pol system
    Hong Ling
    CHINESE PHYSICS B, 2010, 19 (03)
  • [33] Bifurcation and chaos in the double-well Duffing-van der Pol oscillator: Numerical and analytical studies
    Venkatesan, A
    Lakshmanan, M
    PHYSICAL REVIEW E, 1997, 56 (06) : 6321 - 6330
  • [34] Heteroclinic Bifurcation Analysis of Duffing-Van der Pol System by the Hyperbolic Lindstedt-Poincare Method
    Chen, Yangyang
    Yan, Lewei
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 2654 - +
  • [35] A phenomenological model of EEG based on the dynamics of a stochastic Duffing-van der Pol oscillator network
    Ghorbanian, P.
    Ramakrishnan, S.
    Whitman, A.
    Ashrafiuon, H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 15 : 1 - 10
  • [36] Hopf bifurcation in a kind of stochastic van der Pol system
    Ma Shao-Juan
    ACTA PHYSICA SINICA, 2011, 60 (01)
  • [37] Hopf Bifurcation of Compound Stochastic van der Pol System
    Ma, Shaojuan
    Zhang, Qianling
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [38] Investigation on Dynamics of the Extended Duffing-Van der Pol System
    Yu, Jun
    Li, Jieru
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (5-6): : 341 - 346
  • [39] Global analysis of stochastic bifurcation in a Doffing-van der Pol system
    Xu, W
    He, Q
    Rong, HW
    Fang, T
    ACTA PHYSICA SINICA, 2003, 52 (06) : 1365 - 1371
  • [40] CONTROLLING OF CHAOS BY WEAK PERIODIC PERTURBATIONS IN DUFFING-VAN DER POL OSCILLATOR
    RAJASEKAR, S
    PRAMANA-JOURNAL OF PHYSICS, 1993, 41 (04): : 295 - 309