Simultaneous X-ray Nano-Ptychographic and Fluorescence Microscopy at the Bionanoprobe

被引:2
|
作者
Chen, S. [1 ]
Deng, J. [2 ]
Vine, D. J. [1 ]
Nashed, Y. S. G. [3 ]
Jin, Q. [4 ]
Peterka, T. [3 ]
Jacobsen, C. [1 ,2 ,4 ,5 ]
Vogt, S. [1 ]
机构
[1] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA
[2] Northwestern Univ, Appl Phys, Evanston, IL 60208 USA
[3] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA
[4] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[5] Northwestern Univ, Chem Life Proc Inst, Evanston, IL 60208 USA
关键词
hard X-ray fluorescence microscopy; ptychography; 3D; DIFFRACTION;
D O I
10.1117/12.2190672
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hard X-ray fluorescence (XRF) microscopy offers unparalleled sensitivity for quantitative analysis of most of the trace elements in biological samples, such as Fe, Cu, and Zn. These trace elements play critical roles in many biological processes. With the advanced nano-focusing optics, nowadays hard X-rays can be focused down to 30 nm or below and can probe trace elements within subcellular compartments. However, XRF imaging does not usually reveal much information on ultrastructure, because the main constituents of biomaterials, i.e. H, C, N, and O, have no fluorescence lines (H) or low fluorescence yield (C, N and O) and little absorption contrast at multi-keV X-ray energies. An alternative technique for imaging ultrastructure is ptychography. One can record far-field diffraction patterns from a coherently illuminated sample, and then reconstruct the complex transmission function of the sample. In theory the spatial resolution of ptychography can reach the wavelength limit. In this manuscript, we will describe the implementation of ptychography at the Bionanoprobe (a recently developed hard XRF nanoprobe at the Advanced Photon Source) and demonstrate simultaneous ptychographic and XRF imaging of frozen-hydrated biological whole cells. This method allows locating trace elements within the subcellular structures of biological samples with high spatial resolution. Additionally, both ptychographic and XRF imaging are compatible with tomographic approach for 3D visualization.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Ptychographic X-Ray Imaging of Colloidal Crystals
    Lazarev, Sergey
    Besedin, Ilya
    Zozulya, Alexey V.
    Meijer, Janne-Mieke
    Dzhigaev, Dmitry
    Gorobtsov, Oleg Yu.
    Kurta, Ruslan P.
    Rose, Max
    Shabalin, Anatoly G.
    Sulyanova, Elena A.
    Zaluzhnyy, Ivan A.
    Menushenkov, Alexey P.
    Sprung, Michael
    Petukhov, Andrei V.
    Vartanyants, Ivan A.
    SMALL, 2018, 14 (03)
  • [22] Simultaneous soft X-ray transmission and emission microscopy
    Gianoncelli, A.
    Kaulich, B.
    Alberti, R.
    Klatka, T.
    Longoni, A.
    de Marco, A.
    Marcello, A.
    Kiskinova, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 608 (01): : 195 - 198
  • [23] Preparation of tissue samples for X-ray fluorescence microscopy
    Chwiej, J
    Szczerbowska-Boruchowska, M
    Lankosz, M
    Wojcik, S
    Falkenberg, G
    Stegowski, Z
    Setkowicz, Z
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2005, 60 (12) : 1531 - 1537
  • [24] X-Ray Fluorescence Microscopy at the Advanced Photon Source
    Woloschak, Gayle E.
    Chen, S.
    Paunesku, T.
    SPECTROSCOPY, 2019, 34 (07) : 38 - 40
  • [25] X-ray fluorescence microscopy of olfactory receptor neurons
    Ducic, T.
    Breunig, E.
    Schild, D.
    Herbst, J.
    Novakova, E.
    Susini, J.
    Tucoulu, R.
    Salditt, T.
    9TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY, 2009, 186
  • [26] The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron
    Paterson, D.
    de Jonge, M. D.
    Howard, D. L.
    Lewis, W.
    McKinlay, J.
    Starritt, A.
    Kusel, M.
    Ryan, C. G.
    Kirkham, R.
    Moorhead, G.
    Siddons, D. P.
    10TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY, 2011, 1365 : 219 - 222
  • [27] X-RAY FLUORESCENCE MICROSCOPY FOR INVESTIGATION OF ARCHIVAL TISSUES
    Paunesku, T.
    Wanzer, M. B.
    Kirillova, E. N.
    Muksinova, K. N.
    Revina, V. S.
    Lyubchansky, E. R.
    Grosche, B.
    Birschwilks, M.
    Vogt, S.
    Finney, L.
    Woloschak, G. E.
    HEALTH PHYSICS, 2012, 103 (02): : 181 - 186
  • [28] X-ray fluorescence microscopy methods for biological tissues
    Pushie, M. Jake
    Sylvain, Nicole J.
    Hou, Huishu
    Hackett, Mark J.
    Kelly, Michael E.
    Webb, Samuel M.
    METALLOMICS, 2022, 14 (06)
  • [29] Ptychographic X-ray computed tomography at the nanoscale
    Martin Dierolf
    Andreas Menzel
    Pierre Thibault
    Philipp Schneider
    Cameron M. Kewish
    Roger Wepf
    Oliver Bunk
    Franz Pfeiffer
    Nature, 2010, 467 : 436 - 439
  • [30] Ptychographic X-ray computed tomography at the nanoscale
    Dierolf, Martin
    Menzel, Andreas
    Thibault, Pierre
    Schneider, Philipp
    Kewish, Cameron M.
    Wepf, Roger
    Bunk, Oliver
    Pfeiffer, Franz
    NATURE, 2010, 467 (7314) : 436 - U82