Amalgamated free product rigidity for group von Neumann algebras

被引:18
|
作者
Chifan, Ionut [1 ]
Ioana, Adrian [2 ,3 ]
机构
[1] Univ Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
[3] IMAR, Bucharest, Romania
基金
美国国家科学基金会;
关键词
W*-superrigidity; Group von Neumann algebra; Amalgamated free product; W-ASTERISK-SUPERRIGIDITY; II1; FACTORS; STRUCTURAL THEORY; MALLEABLE ACTIONS; BERNOULLI ACTIONS; PROPERTY-T; INDEX; RINGS;
D O I
10.1016/j.aim.2018.02.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a fairly large family of amalgamated free product groups Gamma = Gamma(1) (*Sigma) Gamma(2) whose amalgam structure can be completely recognized from their von Neumann algebras. Specifically, assume that Gamma(i) is a product of two icc non-amenable bi-exact groups, and Sigma is icc amenable with trivial one-sided commensurator in Gamma(i), for every i = 1,2. Then Gamma satisfies the following rigidity property: any group Lambda such that L(Lambda) is isomorphic to L(Gamma) admits an amalgamated free product decomposition Lambda = Lambda(1 *Delta) Lambda(2) such that the inclusions L(Delta) subset of L(Lambda(i)) and L(Sigma) subset of L(Gamma(i)) are isomorphic, for every i = 1,2. This result significantly strengthens some of the previous Bass-Serre rigidity results for von Neumann algebras. As a corollary, we obtain the first examples of amalgamated free product groups which are W*-superrigid. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:819 / 850
页数:32
相关论文
共 50 条
  • [41] On the amenable subalgebras of group von Neumann algebras
    Amrutam, Tattwamasi
    Hartman, Yair
    Oppelmayer, Hanna
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (02)
  • [42] Group amenabililty properties for von Neumann algebras
    Lau, Anthony T.
    Paterson, Alan L. T.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (04) : 1363 - 1388
  • [43] A class of superrigid group von Neumann algebras
    Ioana, Adrian
    Popa, Sorin
    Vaes, Stefaan
    ANNALS OF MATHEMATICS, 2013, 178 (01) : 231 - 286
  • [44] The bass conjecture and group von Neumann algebras
    Schafer, JA
    K-THEORY, 2000, 19 (03): : 211 - 217
  • [45] Decomposition of a group into a free product or amalgamated sum
    Delzant, T
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 470 : 153 - 180
  • [46] RANDOM MATRICES, AMALGAMATED FREE-PRODUCTS AND SUBFACTORS OF THE VON-NEUMANN ALGEBRA OF A FREE GROUP, OF NONINTEGER INDEX
    RADULESCU, F
    INVENTIONES MATHEMATICAE, 1994, 115 (02) : 347 - 389
  • [47] Compressions of free products of von Neumann algebras
    Kenneth J. Dykema
    Florin Radulescu
    Mathematische Annalen, 2000, 316 : 61 - 82
  • [48] Compressions of free products of von Neumann algebras
    Dykema, KJ
    Radulescu, F
    MATHEMATISCHE ANNALEN, 2000, 316 (01) : 61 - 82
  • [49] Similarity degrees for the crossed product of von Neumann algebras
    Jin Song Wu
    Wen Ming Wu
    Acta Mathematica Sinica, English Series, 2014, 30 : 723 - 736
  • [50] Nonlinear Maps Preserving Product on von Neumann Algebras
    Li, C.
    Zhao, F.
    Chen, Q.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (03): : 729 - 738