Amalgamated free product rigidity for group von Neumann algebras
被引:18
|
作者:
Chifan, Ionut
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USAUniv Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
Chifan, Ionut
[1
]
Ioana, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
IMAR, Bucharest, RomaniaUniv Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
Ioana, Adrian
[2
,3
]
机构:
[1] Univ Iowa, Dept Math, 14 MacLean Hall, Iowa City, IA 52242 USA
[2] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
W*-superrigidity;
Group von Neumann algebra;
Amalgamated free product;
W-ASTERISK-SUPERRIGIDITY;
II1;
FACTORS;
STRUCTURAL THEORY;
MALLEABLE ACTIONS;
BERNOULLI ACTIONS;
PROPERTY-T;
INDEX;
RINGS;
D O I:
10.1016/j.aim.2018.02.025
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We provide a fairly large family of amalgamated free product groups Gamma = Gamma(1) (*Sigma) Gamma(2) whose amalgam structure can be completely recognized from their von Neumann algebras. Specifically, assume that Gamma(i) is a product of two icc non-amenable bi-exact groups, and Sigma is icc amenable with trivial one-sided commensurator in Gamma(i), for every i = 1,2. Then Gamma satisfies the following rigidity property: any group Lambda such that L(Lambda) is isomorphic to L(Gamma) admits an amalgamated free product decomposition Lambda = Lambda(1 *Delta) Lambda(2) such that the inclusions L(Delta) subset of L(Lambda(i)) and L(Sigma) subset of L(Gamma(i)) are isomorphic, for every i = 1,2. This result significantly strengthens some of the previous Bass-Serre rigidity results for von Neumann algebras. As a corollary, we obtain the first examples of amalgamated free product groups which are W*-superrigid. (C) 2018 Elsevier Inc. All rights reserved.
机构:
U Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USAU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA
JUNGE, M. A. R. I. U. S.
PALAZUELOS, C. A. R. L. O. S.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid, SpainU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA
PALAZUELOS, C. A. R. L. O. S.
PARCET, J. A. V. I. E. R.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid, SpainU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA
PARCET, J. A. V. I. E. R.
PERRIN, M. A. T. H. I. L. D. E.
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid, SpainU Illinois Urbana Champaign, Dept Math, 1409 W Green St, Urbana, IL USA