Bayesian influence analysis of generalized partial linear mixed models for longitudinal data

被引:9
|
作者
Tang, Nian-Sheng [1 ]
Duan, Xing-De [1 ,2 ]
机构
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Bayesian case influence; Bayesian local influence; Bayesian perturbation manifold; Dirichlet process prior; Generalized partial linear mixed models; LOCAL INFLUENCE; SENSITIVITY; INFERENCE; DIAGNOSTICS; DIRICHLET;
D O I
10.1016/j.jmva.2013.12.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a Bayesian local influence approach to assess the effects of minor perturbations to the prior, sampling distribution and individual observations on the statistical inference in generalized partial linear mixed models (GPLMMs) with the distribution of random effects specified by a truncated and centered Dirichlet process (TCDP) prior. A perturbation manifold is defined. The metric tensor is employed to select an appropriate perturbation vector. Several Bayesian local influence measures are proposed to quantify the degree of various perturbations to statistical models based on the first and second-order approximations to the objective functions including the phi-divergence, the posterior mean distance and 'Bayes factor. We develop two Bayesian case influence measures to detect the influential observations in GPLMMs based on the phi-divergence and Cook's posterior mean distance. The computationally feasible formulae for Bayesian influence analysis are given. Several simulation studies and a real example are presented to illustrate the proposed methodologies. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 99
页数:14
相关论文
共 50 条
  • [31] Bayesian Analysis of Generalized Linear Models for Count Data using Stan
    Yousuf, Firdoos
    Khan, Athar Ali
    THAILAND STATISTICIAN, 2025, 23 (01): : 29 - 40
  • [32] Bayesian compositional generalized linear mixed models for disease prediction using microbiome data
    Zhang, Li
    Zhang, Xinyan
    Leach, Justin M.
    Rahman, A. K. M. F.
    Howell, Carrie R.
    Yi, Nengjun
    BMC BIOINFORMATICS, 2025, 26 (01):
  • [33] Model selection for Bayesian linear mixed models with longitudinal data: Sensitivity to the choice of priors
    Ariyo, Oludare
    Lesaffre, Emmanuel
    Verbeke, Geert
    Quintero, Adrian
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (04) : 1591 - 1615
  • [34] Text Data Analysis Using Generalized Linear Mixed Model and Bayesian Visualization
    Jun, Sunghae
    AXIOMS, 2022, 11 (12)
  • [35] Bayesian variable selection in generalized additive partial linear models
    Banerjee, Sayantan
    Ghosal, Subhashis
    STAT, 2014, 3 (01): : 363 - 378
  • [36] LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS
    LIANG, KY
    ZEGER, SL
    BIOMETRIKA, 1986, 73 (01) : 13 - 22
  • [37] Local influence for generalized linear mixed models
    Zhu, HT
    Lee, SY
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (03): : 293 - 309
  • [38] Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data
    Li, Yisheng
    Lin, Xihong
    Mueller, Peter
    BIOMETRICS, 2010, 66 (01) : 70 - 78
  • [39] Linear mixed models for longitudinal data.
    Raudenbush, SW
    SOCIOLOGICAL METHODS & RESEARCH, 2002, 31 (01) : 110 - 118
  • [40] Effect of Smoothing in Generalized Linear Mixed Models on the Estimation of Covariance Parameters for Longitudinal Data
    Mullah, Muhammad Abu Shadeque
    Benedetti, Andrea
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (02): : 1 - 19