Model selection for Bayesian linear mixed models with longitudinal data: Sensitivity to the choice of priors

被引:11
|
作者
Ariyo, Oludare [1 ,2 ]
Lesaffre, Emmanuel [1 ]
Verbeke, Geert [1 ]
Quintero, Adrian [1 ]
机构
[1] Katholieke Univ Leuven, Interuniv Inst Biostat & Stat Bioinformat I BioS, Kapucijnenvoer 35,Block D,Bus 7001, B-3000 Leuven, Belgium
[2] Fed Univ Agr, Dept Stat, Abeokuta, Nigeria
关键词
Covariance matrices; Linear mixed-effects models; Model selection criteria; Vague priors; 62PXX; DEVIANCE INFORMATION CRITERION; VARIANCE-COMPONENTS ANALYSIS; COVARIANCE MATRICES; PRIOR DISTRIBUTIONS; PARAMETERS; REGRESSION; ARTICLE; BROWNE; GLMMS; FIT;
D O I
10.1080/03610918.2019.1676439
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We explore the performance of three popular Bayesian model-selection criteria when vague priors are used for the covariance parameters of the random effects in a linear mixed-effects model (LMM) using an extensive simulation study. In a previous paper, we have shown that the conditional selection criteria perform worse than their marginal counterparts. It is known that for some ?vague? priors, their impact on the estimated model parameters can be non-negligible, e.g., for the priors of the covariance matrix of the random effects in a longitudinal LMM. We evaluate here the impact of vague priors for the covariance matrix of the random effects on selecting the correct LMM using classical Bayesian selection criteria. We consider marginal and conditional criteria. For the random intercept case, we assign different vague priors to the variance parameters. With two or more random effects, we considered five different specifications of inverse-Wishart (IW) prior, five different separation priors and a joint prior. The results show again the better performance of the marginal over the conditional criteria and the superiority of joint and separation priors over IW in all settings. We also illustrate the performance of the selection criteria on a practical dataset.
引用
收藏
页码:1591 / 1615
页数:25
相关论文
共 50 条
  • [1] Bayesian model selection in linear mixed models for longitudinal data
    Ariyo, Oludare
    Quintero, Adrian
    Munoz, Johanna
    Verbeke, Geert
    Lesaffre, Emmanuel
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (05) : 890 - 913
  • [2] Flexible linear mixed models with improper priors for longitudinal and survival data
    Rubio, F. J.
    Steel, M. F. J.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 572 - 598
  • [3] Bayesian model selection in linear mixed effects models with autoregressive(p) errors using mixture priors
    Fan, Tsai-Hung
    Wang, Yi-Fu
    Zhang, Yi-Chen
    [J]. JOURNAL OF APPLIED STATISTICS, 2014, 41 (08) : 1814 - 1829
  • [4] Model Selection with the Linear Mixed Model for Longitudinal Data
    Ryoo, Ji Hoon
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (04) : 598 - 624
  • [5] Bayesian model selection for generalized linear mixed models
    Xu, Shuangshuang
    Ferreira, Marco A. R.
    Porter, Erica M.
    Franck, Christopher T.
    [J]. BIOMETRICS, 2023, 79 (04) : 3266 - 3278
  • [6] Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration
    Ji, Yonggang
    Shi, Haifang
    [J]. PLOS ONE, 2020, 15 (10):
  • [7] Bayesian model selection for generalized linear models using non-local priors
    Shi, Guiling
    Lim, Chae Young
    Maiti, Tapabrata
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 133 : 285 - 296
  • [8] Sensitivity analysis in Bayesian generalized linear mixed models for binary data
    Roos, Malgorzata
    Held, Leonhard
    [J]. BAYESIAN ANALYSIS, 2011, 6 (02): : 259 - 278
  • [9] Bayesian influence analysis of generalized partial linear mixed models for longitudinal data
    Tang, Nian-Sheng
    Duan, Xing-De
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 126 : 86 - 99
  • [10] A semiparametric Bayesian approach to generalized partial linear mixed models for longitudinal data
    Tang, Nian-Sheng
    Duan, Xing-De
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4348 - 4365