Bayesian influence analysis of generalized partial linear mixed models for longitudinal data
被引:9
|
作者:
Tang, Nian-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Tang, Nian-Sheng
[1
]
Duan, Xing-De
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Duan, Xing-De
[1
,2
]
机构:
[1] Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
[2] Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Peoples R China
Bayesian case influence;
Bayesian local influence;
Bayesian perturbation manifold;
Dirichlet process prior;
Generalized partial linear mixed models;
LOCAL INFLUENCE;
SENSITIVITY;
INFERENCE;
DIAGNOSTICS;
DIRICHLET;
D O I:
10.1016/j.jmva.2013.12.005
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
This paper develops a Bayesian local influence approach to assess the effects of minor perturbations to the prior, sampling distribution and individual observations on the statistical inference in generalized partial linear mixed models (GPLMMs) with the distribution of random effects specified by a truncated and centered Dirichlet process (TCDP) prior. A perturbation manifold is defined. The metric tensor is employed to select an appropriate perturbation vector. Several Bayesian local influence measures are proposed to quantify the degree of various perturbations to statistical models based on the first and second-order approximations to the objective functions including the phi-divergence, the posterior mean distance and 'Bayes factor. We develop two Bayesian case influence measures to detect the influential observations in GPLMMs based on the phi-divergence and Cook's posterior mean distance. The computationally feasible formulae for Bayesian influence analysis are given. Several simulation studies and a real example are presented to illustrate the proposed methodologies. (C) 2013 Elsevier Inc. All rights reserved.
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Chuxiong Normal Sch, Inst Appl Stat, Chuxiong 675000, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
Duan, Xing-De
Tang, Nian-Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Dept Stat, Kunming 650091, Peoples R ChinaYunnan Univ, Dept Stat, Kunming 650091, Peoples R China
机构:
Guizhou Normal Univ, Sch Math Sci, Guiyang, Peoples R China
Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang, Peoples R ChinaGuizhou Normal Univ, Sch Math Sci, Guiyang, Peoples R China
He, Peng-Fei
Duan, Xind-De
论文数: 0引用数: 0
h-index: 0
机构:
Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang, Peoples R China
Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R ChinaGuizhou Normal Univ, Sch Math Sci, Guiyang, Peoples R China
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China
Zhejiang Univ, Sch Math Sci, Hangzhou 31000, ZJ, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China
Geng, Shuli
Zhang, Lixin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R ChinaZhejiang Univ, Sch Math Sci, Hangzhou, Peoples R China
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USAUniv Washington, Dept Stat, Seattle, WA 98112 USA
Fong, Youyi
Rue, Havard
论文数: 0引用数: 0
h-index: 0
机构:
Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, NorwayUniv Washington, Dept Stat, Seattle, WA 98112 USA
Rue, Havard
Wakefield, Jon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Stat, Seattle, WA 98112 USA
Univ Washington, Dept Biostat, Seattle, WA 98195 USAUniv Washington, Dept Stat, Seattle, WA 98112 USA