Hexagon model for 3D Lorentzian quantum cosmology

被引:14
|
作者
Dittrich, B
Loll, R
机构
[1] Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
[2] Univ Utrecht, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 08期
关键词
D O I
10.1103/PhysRevD.66.084016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We formulate a dynamically triangulated model of three-dimensional Lorentzian quantum gravity whose spatial sections are flat two tori. It is shown that the combinatorics involved in evaluating the one-step propagator (the transfer matrix) is that of a set of vicious walkers on a two-dimensional lattice with periodic boundary conditions and that the entropy of the model scales exponentially with the volume. We also give explicit expressions for the Teichmuller parameters of the spatial slices in terms of the discrete parameters of the 3D triangulations, and reexpress the discretized action in terms of them. The relative simplicity and explicitness of this model make it ideally suited for an analytic study of the conformal-factor cancellation observed previously in Lorentzian dynamical triangulations and of its relation to alternative, reduced phase space quantizations of 3D gravity.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] The Quantum 3D Superparticle
    Mezincesu, Luca
    Townsend, Paul K.
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [32] The Lorentzian inversion formula and the spectrum of the 3d O(2) CFT
    Liu, Junyu
    Meltzer, David
    Poland, David
    Simmons-Duffin, David
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [33] Superintegrable Potentials on 3D Riemannian and Lorentzian Spaces with Nonconstant Curvature
    Ballesteros, A.
    Enciso, A.
    Herranz, F. J.
    Ragnisco, O.
    [J]. PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) : 255 - 263
  • [34] Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature
    A. Ballesteros
    A. Enciso
    F. J. Herranz
    O. Ragnisco
    [J]. Physics of Atomic Nuclei, 2010, 73 : 255 - 263
  • [35] The Lorentzian inversion formula and the spectrum of the 3d O(2) CFT
    Junyu Liu
    David Meltzer
    David Poland
    David Simmons-Duffin
    [J]. Journal of High Energy Physics, 2020
  • [36] A SPINOR MODEL FOR QUANTUM COSMOLOGY
    DERELI, T
    ONDER, M
    TUCKER, RW
    [J]. PHYSICS LETTERS B, 1994, 324 (02) : 134 - 140
  • [37] O(d,d) symmetry in quantum cosmology
    Kehagias, AA
    Lukas, A
    [J]. NUCLEAR PHYSICS B, 1996, 477 (02) : 549 - 563
  • [38] Quantum Self-Correction in the 3D Cubic Code Model
    Bravyi, Sergey
    Haah, Jeongwan
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (20)
  • [39] Hubbard Model on the Pyrochlore Lattice: A 3D Quantum Spin Liquid
    Normand, B.
    Nussinov, Z.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (20)
  • [40] Simplicity constraints: A 3D toy model for loop quantum gravity
    Charles, Christoph
    [J]. PHYSICAL REVIEW D, 2018, 97 (10)