Superintegrable Potentials on 3D Riemannian and Lorentzian Spaces with Nonconstant Curvature

被引:0
|
作者
Ballesteros, A. [1 ]
Enciso, A. [2 ]
Herranz, F. J. [3 ]
Ragnisco, O. [4 ,5 ]
机构
[1] Univ Burgos, Fac Ciencias, Dept Fis, Burgos, Spain
[2] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[3] Univ Burgos, Escuela Politecn Super, Dept Fis, Burgos, Spain
[4] Univ Roma Tre, Dept Fis, Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy
基金
俄罗斯基础研究基金会;
关键词
SMORODINSKY-WINTERNITZ POTENTIALS; DIMENSIONAL CURVED SPACES; CONSTANT-CURVATURE; EUCLIDEAN-SPACE; DEFORMATIONS; OSCILLATOR; SYSTEMS; SPHERE; COMPLETENESS; CONTRACTIONS;
D O I
10.1134/S1063778810020092
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A quantum sl(2, R) coalgebra (with deformation parameter z) is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the nonconstant curvature analog of the spherical, hyperbolic, and (anti-) de Sitter spaces. The connection and curvature tensors for these "deformed" spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the nondeformed limit z -> 0 is identified with the. at contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of nonconstant curvature are identified, and several examples of them are explicitly presented.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 50 条
  • [1] Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature
    A. Ballesteros
    A. Enciso
    F. J. Herranz
    O. Ragnisco
    [J]. Physics of Atomic Nuclei, 2010, 73 : 255 - 263
  • [2] Path integral approach for superintegrable potentials on spaces of nonconstant curvature: I. Darboux spaces DI and DII
    C. Grosche
    G. S. Pogosyan
    A. N. Sissakian
    [J]. Physics of Particles and Nuclei, 2007, 38 : 299 - 325
  • [3] Path integral approach for superintegrable potentials on spaces of nonconstant curvature:: I.: Darboux spaces DI and DII
    Grosche, C.
    Pogosyan, G. S.
    Sissakian, A. N.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2007, 38 (03) : 299 - 325
  • [4] Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stackel Transform
    Ballesteros, Angel
    Enciso, Alberto
    Herranz, Francisco J.
    Ragnisco, Orlando
    Riglioni, Danilo
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [5] The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [6] Path integral approach for superintegrable potentials on spaces of non-constant curvature:: II.: Darboux spaces D III and D IV
    Grosche, Ch.
    Pogosyan, G. S.
    Sissakian, A. N.
    [J]. PHYSICS OF PARTICLES AND NUCLEI, 2007, 38 (05) : 525 - 563
  • [7] From oscillator(s) and Kepler(s) potentials to general superintegrable systems in spaces of constant curvature
    Santander, M
    Sanz-Gil, T
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2005, 55 (03) : 371 - 383
  • [8] Integrable and Superintegrable 3D Newtonian Potentials Using Quadratic First Integrals: A Review
    Mitsopoulos, Antonios
    Tsamparlis, Michael
    [J]. UNIVERSE, 2023, 9 (01)
  • [9] Separation equations for 2D superintegrable systems on constant curvature spaces
    Escobar-Ruiz, M. A.
    Kalnins, Ernest G.
    Miller, Willard, Jr.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (38)
  • [10] Principal mappings of 3-dimensional Riemannian spaces into spaces of constant curvature
    Bel, L
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1996, 28 (09) : 1139 - 1150