(Un)Decidability of Injectivity and Surjectivity in One-Dimensional Sand Automata

被引:0
|
作者
Richard, Gaetan [1 ]
机构
[1] Aix Marseille Univ, CNRS, Lab Informat Fondamentale Marseille, F-13453 Marseille, France
关键词
CELLULAR-AUTOMATA;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Extension of sand pile models, one-dimensional smid automata are an intermediate discrete dynamical system between one dimensional cellular automata and two-dimensional cellular automata . In this paper, we shall study the decidability problem of global behavior of this systsem. In particular, we shall focus on the problem of injectivity and surjectivity which have the property of being decidable for one-dimensional cellular automata and undecidable for two-dimensional one. We prove the following quite stil-prising property that surjectivity is undecidable whereas injectivity is decidable. For completeness, we also study these properties on some classical restrictions of configurations (finite, periodic and bounded ones).
引用
收藏
页码:651 / 662
页数:12
相关论文
共 50 条
  • [31] Model Checking One-Dimensional Cellular Automata
    Sutner, Klaus
    JOURNAL OF CELLULAR AUTOMATA, 2009, 4 (03) : 213 - 224
  • [32] ONE-DIMENSIONAL CELLULAR AUTOMATA AS ARITHMETIC RECURSIONS
    URIAS, J
    PHYSICA D, 1989, 36 (1-2): : 109 - 110
  • [33] From One-dimensional to Two-dimensional Cellular Automata
    Dennunzio, Alberto
    FUNDAMENTA INFORMATICAE, 2012, 115 (01) : 87 - 105
  • [34] ONE-DIMENSIONAL CONSOLIDATION CURVES OF A MEDIUM SAND
    CORNFORTH, DH
    GEOTECHNIQUE, 1974, 24 (04): : 678 - 683
  • [35] Symmetry and Entropy of One-Dimensional Legal Cellular Automata
    Yamasaki, Kazuhito
    Nanjo, Kazuyoshi Z.
    Chiba, Satoshi
    COMPLEX SYSTEMS, 2012, 20 (04): : 351 - 361
  • [36] Entanglement dynamics in one-dimensional quantum cellular automata
    Brennen, GK
    Williams, JE
    PHYSICAL REVIEW A, 2003, 68 (04): : 1 - 042311
  • [37] The intrinsic universality problem of one-dimensional cellular automata
    Ollinger, N
    STACS 2003, PROCEEDINGS, 2003, 2607 : 632 - 641
  • [38] Ranks of finite semigroups of one-dimensional cellular automata
    Castillo-Ramirez, Alonso
    Gadouleau, Maximilien
    SEMIGROUP FORUM, 2016, 93 (02) : 347 - 362
  • [39] PERIODICITY IN ONE-DIMENSIONAL FINITE LINEAR CELLULAR AUTOMATA
    TADAKI, S
    MATSUFUJI, S
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (02): : 325 - 331
  • [40] Spectral properties of reversible one-dimensional cellular automata
    Mora, JCST
    Vergara, SVC
    Martinez, GJ
    McIntosh, HV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (03): : 379 - 395