(Un)Decidability of Injectivity and Surjectivity in One-Dimensional Sand Automata

被引:0
|
作者
Richard, Gaetan [1 ]
机构
[1] Aix Marseille Univ, CNRS, Lab Informat Fondamentale Marseille, F-13453 Marseille, France
来源
MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2009 | 2009年 / 5734卷
关键词
CELLULAR-AUTOMATA;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Extension of sand pile models, one-dimensional smid automata are an intermediate discrete dynamical system between one dimensional cellular automata and two-dimensional cellular automata . In this paper, we shall study the decidability problem of global behavior of this systsem. In particular, we shall focus on the problem of injectivity and surjectivity which have the property of being decidable for one-dimensional cellular automata and undecidable for two-dimensional one. We prove the following quite stil-prising property that surjectivity is undecidable whereas injectivity is decidable. For completeness, we also study these properties on some classical restrictions of configurations (finite, periodic and bounded ones).
引用
收藏
页码:651 / 662
页数:12
相关论文
共 50 条
  • [21] Calculating ancestors in one-dimensional cellular automata
    Mora, JCST
    Martínez, GJ
    Mcintosh, HV
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (08): : 1151 - 1169
  • [22] One-dimensional pattern generation by cellular automata
    Martin Kutrib
    Andreas Malcher
    Natural Computing, 2022, 21 : 361 - 375
  • [23] Transductions Computed by One-Dimensional Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (90): : 194 - 207
  • [24] One-Dimensional Pattern Generation by Cellular Automata
    Kutrib, Martin
    Malcher, Andreas
    CELLULAR AUTOMATA, ACRI 2020, 2021, 12599 : 46 - 55
  • [25] Boundary Growth in One-Dimensional Cellular Automata
    Brummitt, Charles D.
    Rowland, Eric
    COMPLEX SYSTEMS, 2012, 21 (02): : 85 - 116
  • [26] ITERATIVE BEHAVIOR OF ONE-DIMENSIONAL THRESHOLD AUTOMATA
    GOLES, E
    TCHUENTE, M
    DISCRETE APPLIED MATHEMATICS, 1984, 8 (03) : 319 - 322
  • [27] Mixing properties of one-dimensional cellular automata
    Kleveland, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (06) : 1755 - 1766
  • [28] THE STRUCTURE OF REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
    HILLMAN, D
    PHYSICA D, 1991, 52 (2-3): : 277 - 292
  • [29] Local information in one-dimensional cellular automata
    Helvik, T
    Lindgren, K
    Nordahl, MG
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 121 - 130
  • [30] LYAPUNOV EXPONENTS FOR ONE-DIMENSIONAL CELLULAR AUTOMATA
    SHERESHEVSKY, MA
    JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (01) : 1 - 8