Twistors, 4-symmetric spaces and integrable systems

被引:9
|
作者
Burstall, Francis E. [1 ]
Khemar, Idrisse [2 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Tech Univ Munich, Zentrum Math M8, D-85747 Garching, Germany
关键词
HAMILTONIAN-SYSTEMS; HARMONIC SECTIONS; LIE-GROUPS; SURFACES; MAPS; TORI;
D O I
10.1007/s00208-008-0313-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An order four automorphism of a Lie algebra gives rise to an integrable system introduced by Terng. We show that solutions of this system may be identified with certain vertically harmonic twistor lifts of conformal maps of surfaces in a Rie-mannian symmetric space. As applications, we find that surfaces with holomorphic mean curvature in 4-dimensional real or complex space forms constitute an integrable system as do Hamiltonian stationary Lagrangian surfaces in 4-dimensional Hermitian symmetric spaces (this last providing a conceptual explanation of a result of Helein-Romon).
引用
收藏
页码:451 / 461
页数:11
相关论文
共 50 条
  • [41] Full reversal symmetric multiple soliton solutions for integrable systems
    Lou Sen-Yue
    ACTA PHYSICA SINICA, 2020, 69 (01)
  • [42] Polynomial Hamiltonian integrable systems on symmetric powers of plane curves
    Buchstaber, V. M.
    Mikhailov, A. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (06) : 1122 - 1124
  • [43] A kind of multi-component ren symmetric integrable systems
    Wang, Haifeng
    Li, Jinxiu
    Wu, Hongxia
    MODERN PHYSICS LETTERS A, 2025, 40 (05N06)
  • [44] RATIONAL BUNDLES AND RECURSION OPERATORS FOR INTEGRABLE EQUATIONS ON A.III-TYPE SYMMETRIC SPACES
    Gerdjikov, V. S.
    Grahovski, G. G.
    Mikhailov, A. V.
    Valchev, T. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 167 (03) : 740 - 750
  • [45] Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces
    V. S. Gerdjikov
    G. G. Grahovski
    A. V. Mikhailov
    T. I. Valchev
    Theoretical and Mathematical Physics, 2011, 167 : 740 - 750
  • [46] 4-VALUEDNESS OF TWISTORS
    CLARKE, CJS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (03) : 229 - 231
  • [47] On controllability of driftless control systems on symmetric spaces
    Tiwari, Archana
    Padhan, Rudra Narayan
    Pati, Kishor Chandra
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (03) : 689 - 702
  • [48] Integrable systems associated to curves in flat Galilean and Minkowski spaces
    Squires, Shane A.
    Beffa, Gloria Mari
    APPLICABLE ANALYSIS, 2010, 89 (04) : 571 - 592
  • [49] The Riemannian geometry of orbit spaces - the metric, geodesics, and integrable systems
    Alekseevsky, D
    Kriegl, A
    Losik, M
    Michor, PW
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 247 - 276
  • [50] DR Hierarchies: From the Moduli Spaces of Curves to Integrable Systems
    Buryak, A. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (01) : 21 - 59