RATIONAL BUNDLES AND RECURSION OPERATORS FOR INTEGRABLE EQUATIONS ON A.III-TYPE SYMMETRIC SPACES

被引:10
|
作者
Gerdjikov, V. S. [1 ]
Grahovski, G. G. [1 ,2 ]
Mikhailov, A. V. [3 ]
Valchev, T. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria
[2] Dublin Inst Technol, Sch Math Sci, Dublin, Ireland
[3] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
关键词
rational bundle; integrable equation; recursion operator; REDUCTION;
D O I
10.1007/s11232-011-0058-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze and compare methods for constructing the recursion operators for a special class of integrable nonlinear differential equations related to symmetric spaces of the type A.III in Cartan's classification and having additional reductions.
引用
收藏
页码:740 / 750
页数:11
相关论文
共 50 条
  • [1] Rational bundles and recursion operators for integrable equations on A.III-type symmetric spaces
    V. S. Gerdjikov
    G. G. Grahovski
    A. V. Mikhailov
    T. I. Valchev
    Theoretical and Mathematical Physics, 2011, 167 : 740 - 750
  • [2] Reductions of integrable equations on A.III-type symmetric spaces
    Gerdjikov, V. S.
    Mikhailov, A. V.
    Valchev, T. I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (43)
  • [3] Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces
    Gerdjikov, Vladimir S.
    Grahovski, Georgi G.
    Mikhailov, Alexander V.
    Valchev, Tihomir I.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [4] RECURSION OPERATORS AND REDUCTIONS OF INTEGRABLE EQUATIONS ON SYMMETRIC SPACES
    Gerdjikov, Vladimir S.
    Mikhailov, Alexander V.
    Valchev, Tihomir I.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2010, 20 : 1 - 34
  • [5] Rational Recursion Operators for Integrable Differential–Difference Equations
    Sylvain Carpentier
    Alexander V. Mikhailov
    Jing Ping Wang
    Communications in Mathematical Physics, 2019, 370 : 807 - 851
  • [6] Rational Recursion Operators for Integrable Differential-Difference Equations
    Carpentier, Sylvain
    Mikhailov, Alexander V.
    Wang, Jing Ping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (03) : 807 - 851
  • [7] On the recursion operators for integrable equations
    Habibullin, I. T.
    Khakimova, A. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (42)
  • [8] Integrable Equations and Recursion Operators in Planar Klein Geometries
    Benson, Joe
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (03) : 234 - 244
  • [9] Recursion and Hamiltonian operators for integrable nonabelian difference equations
    Casati, Matteo
    Wang, Jing Ping
    NONLINEARITY, 2021, 34 (01) : 205 - 236
  • [10] NONFORMAL RECURSION OPERATORS AND NONLINEAR INTEGRABLE EVOLUTION-EQUATIONS
    BOITI, M
    KONOPELCHENKO, BG
    LETTERS IN MATHEMATICAL PHYSICS, 1986, 12 (02) : 97 - 100