An analysis of a fractal Michaelis-Menten curve

被引:7
|
作者
Heidel, J [1 ]
Maloney, J [1 ]
机构
[1] Univ Nebraska, Dept Math, Omaha, NE 68182 USA
关键词
D O I
10.1017/S0334270000011334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Simple chemical reactions can be described by the Michaelis-Menten response curve relating the velocity V of the reaction and the concentration [S] of the substrate S. To handle more complicated reactions without introducing general polynomial response curves, the rate constants can be considered to be scale dependent. This leads to a new response curve with characteristic sigmoidal shape. But not all sigmoidal curves can be accurately fit with three parameters. In order to get an accurate fit, the lower part of the integral shaped curve cannot be too shallow and the upper part can't be too steep. This paper determines an exact mathematical expression for the steepness and shallowness allowed.
引用
收藏
页码:410 / 422
页数:13
相关论文
共 50 条
  • [21] Analysis of the Michaelis-Menten mechanism in an immobilised enzyme reactor
    Nelson, MI
    Chen, XD
    Sexton, MJ
    ANZIAM JOURNAL, 2005, 47 : 173 - 184
  • [22] Fractal Michaelis-Menten kinetics under steady state conditions: Application to mibefradil
    Marsh, Rebeccah E.
    Tuszynski, Jack A.
    PHARMACEUTICAL RESEARCH, 2006, 23 (12) : 2760 - 2767
  • [23] Monte Carlo analysis of Michaelis-Menten type kinetics
    Nikolov, L
    Kostova, I
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 1995, 9 (02): : 59 - 64
  • [24] Michaelis-Menten for single enzyme molecules
    Allison Doerr
    Nature Methods, 2006, 3 : 158 - 158
  • [25] Legitimacy of the stochastic Michaelis-Menten approximation
    Sanft, K. R.
    Gillespie, D. T.
    Petzold, L. R.
    IET SYSTEMS BIOLOGY, 2011, 5 (01) : 58 - 69
  • [26] Michaelis-Menten for single enzyme molecules
    Doerr, A
    NATURE METHODS, 2006, 3 (03) : 158 - 158
  • [27] Leonor Michaelis and Maud Leonora Menten Celebrating 100 years of the Michaelis-Menten Equation
    Chakravortty, Dipshikha
    RESONANCE-JOURNAL OF SCIENCE EDUCATION, 2013, 18 (11): : 963 - 965
  • [28] Hydrodynamic model of the Michaelis-Menten mechanism
    Sugata, S
    ACH-MODELS IN CHEMISTRY, 1999, 136 (03): : 349 - 357
  • [29] An Iterative Solution of the Michaelis-Menten Equations
    Kosmas, M.
    Papamichael, E. M.
    Bakalis, E. O.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2013, 70 (03) : 971 - 986
  • [30] MICHAELIS-MENTEN ACROSS THE FLOATING BRIDGE
    WOO, OF
    DRUG INTELLIGENCE & CLINICAL PHARMACY, 1981, 15 (02): : 132 - 133