Double shell structured MnFe2O4 @FeO/C derived from MnFe2O4 @ZIF-8 for electromagnetic wave absorption

被引:25
|
作者
Long, Fenglan [1 ]
Wang, Lei [1 ,2 ]
Rehman, Sajjad Ur [1 ]
Zhang, Jun [1 ]
Shen, Shuqi [1 ]
Peng, Biyun [1 ]
Wei, Mengjia [1 ]
Zhang, Wenmiao [1 ,2 ]
Hu, Yifeng [1 ]
Liang, Tongxiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Coll Rare Earths, Ganzhou 341000, Peoples R China
[2] Jiangxi QianYue New Mat Co Ltd, Ganzhou 341003, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell structure; MnFe2O4; Metal-Organic frameworks; Electromagnetic wave absorption; METAL-ORGANIC FRAMEWORKS; MICROWAVE-ABSORPTION; CARBON NANOTUBES; GRAPHENE OXIDE; COMPOSITE; FERRITE; MICROSPHERES; NANOCOMPOSITES; LIGHTWEIGHT; BIOCHAR;
D O I
10.1016/j.jallcom.2022.164197
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The composites formed by the coupling of ferrite and Metal-Organic Framework derivatives have attracted wide attention based on the outstanding microwaves absorption properties. In this paper, MnFe2O4 @ZIF-8 was used as the precursor and was carbonized at 700 degrees C under Ar atmosphere to obtain MnFe2O4 @FeO/C double shell structure. The carbon-coated composite structure is beneficial to enhance the interfacial polarization on the surface of powder particles and enhance the absorbing properties of the material sig-nificantly. Among others, the carbon content is controlled by adjusting the content of coated ZIF-8. The double shell nanoparticle shows excellent reflection loss value of - 53.75 dB at 11.6 GHz with a matching thickness of 1.8 mm, and the corresponding effective absorption bandwidth is 4.74 GHz from 10.27 to 13.90 GHz and 16.89-18.0 GHz.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electrochemical capacitor of MnFe2O4 with NaCl electrolyte
    Kuo, SL
    Wu, NL
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (10) : A495 - A499
  • [32] Nanocrystalline MnFe2O4 produced by niobium doping
    T. K. Kundu
    D. Chakravorty
    Journal of Materials Research, 1999, 14 : 3957 - 3961
  • [33] Nanocrystalline MnFe2O4 produced by niobium doping
    Kundu, TK
    Chakravorty, D
    JOURNAL OF MATERIALS RESEARCH, 1999, 14 (10) : 3957 - 3961
  • [34] Synthesis and Magnetic Properties of MnFe2O4 Nanoparticles
    Thirupathi, G.
    Saipriya, S.
    Singh, R.
    SOLID STATE PHYSICS, PTS 1 AND 2, 2012, 1447 : 1129 - 1130
  • [35] Superspin glass state in MnFe2O4 nanoparticles
    Aslibeiki, B.
    Kameli, P.
    Salamati, H.
    Eshraghi, M.
    Tahmasebi, T.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (19) : 2929 - 2934
  • [36] SONOCHEMICAL SYNTHESIS OF MnFe2O4 SPINEL NANOPARTICLES
    Sukhatskiy, Yu. V.
    Shepida, M. V.
    Korniy, S. A.
    MATERIALS SCIENCE, 2023, 59 (04) : 487 - 493
  • [37] Synthesis and photothermal applications of MnFe2O4 nanoparticles
    S. R. Shahina
    S. Vidya
    Journal of the Australian Ceramic Society, 2023, 59 : 481 - 490
  • [38] In vitro meningeal permeation of MnFe2O4 nanoparticles
    Mauro, Marcella
    Crosera, Matteo
    Bovenzi, Massimo
    Adami, Gianpiero
    Baracchini, Elena
    Maina, Giovanni
    Filon, Francesca Larese
    CHEMICO-BIOLOGICAL INTERACTIONS, 2018, 293 : 48 - 54
  • [39] Magnetic properties of nanosized MnFe2O4 particles
    Zheng, M
    Wu, XC
    Zou, BS
    Wang, YJ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 183 (1-2) : 152 - 156
  • [40] Mossbauer studies of nanosize MnFe2O4 particles
    Gajbhiye, NS
    Balaji, G
    Stahl, B
    Ghafari, M
    HYPERFINE INTERACTIONS (C), VOL 5, PROCEEDINGS, 2002, : 99 - 102