Double shell structured MnFe2O4 @FeO/C derived from MnFe2O4 @ZIF-8 for electromagnetic wave absorption

被引:25
|
作者
Long, Fenglan [1 ]
Wang, Lei [1 ,2 ]
Rehman, Sajjad Ur [1 ]
Zhang, Jun [1 ]
Shen, Shuqi [1 ]
Peng, Biyun [1 ]
Wei, Mengjia [1 ]
Zhang, Wenmiao [1 ,2 ]
Hu, Yifeng [1 ]
Liang, Tongxiang [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Coll Rare Earths, Ganzhou 341000, Peoples R China
[2] Jiangxi QianYue New Mat Co Ltd, Ganzhou 341003, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell structure; MnFe2O4; Metal-Organic frameworks; Electromagnetic wave absorption; METAL-ORGANIC FRAMEWORKS; MICROWAVE-ABSORPTION; CARBON NANOTUBES; GRAPHENE OXIDE; COMPOSITE; FERRITE; MICROSPHERES; NANOCOMPOSITES; LIGHTWEIGHT; BIOCHAR;
D O I
10.1016/j.jallcom.2022.164197
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The composites formed by the coupling of ferrite and Metal-Organic Framework derivatives have attracted wide attention based on the outstanding microwaves absorption properties. In this paper, MnFe2O4 @ZIF-8 was used as the precursor and was carbonized at 700 degrees C under Ar atmosphere to obtain MnFe2O4 @FeO/C double shell structure. The carbon-coated composite structure is beneficial to enhance the interfacial polarization on the surface of powder particles and enhance the absorbing properties of the material sig-nificantly. Among others, the carbon content is controlled by adjusting the content of coated ZIF-8. The double shell nanoparticle shows excellent reflection loss value of - 53.75 dB at 11.6 GHz with a matching thickness of 1.8 mm, and the corresponding effective absorption bandwidth is 4.74 GHz from 10.27 to 13.90 GHz and 16.89-18.0 GHz.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] MnFe2O4/rGO/Diatomite composites with excellent wideband electromagnetic microwave absorption
    Li, Qingyu
    Guo, Wanmi
    Kong, Xiaotian
    Xu, Jiale
    Xu, Chunshan
    Chen, Yue'e
    Chen, Jing
    Jia, Xinyu
    Ding, Yi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 941
  • [22] Bimetallic MnFe2-MOF and Its Derived MnFe2O4 Nanostructures for Supercapacitive Applications
    Bhosale, Rakhee
    Bhosale, Sneha
    Sankannavar, Rohini
    Chavan, Vijay
    Jambhale, Chitra
    Kim, Honggyun
    Kolekar, Sanjay
    ACS APPLIED NANO MATERIALS, 2024, 7 (04) : 4078 - 4091
  • [23] Controlled synthesis of MnFe2O4–Ni core–shell nanoparticles
    Su-Chul Yang
    Cheol-Woo Ahn
    Chee-Sung Park
    Yaodong Yang
    Dwight Viehland
    Shashank Priya
    Journal of Materials Science, 2010, 45 : 1419 - 1424
  • [24] MnFe2O4: Synthesis, Morphology and Electrochemical Properties
    Kulkarni, Shrikant
    Thombare, Balu
    Patil, Shankar
    FUNCTIONAL OXIDES AND NANOMATERIALS, 2017, 1837
  • [25] Synthesis and photothermal applications of MnFe2O4 nanoparticles
    Shahina, S. R.
    Vidya, S.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2023, 59 (02) : 481 - 490
  • [26] Electrospun MnFe2O4 nanofibers:: Preparation and morphology
    Ju, Young-Wan
    Park, Jae-Hyun
    Jung, Hong-Ryun
    Cho, Sung-June
    Lee, Wan-Jin
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (7-8) : 1704 - 1709
  • [27] Synthesis and Characterization of Photocatalytic MnFe2O4 Nanoparticles
    Desai, Harshal B.
    Hathiya, Laxmi J.
    Joshi, Hiren H.
    Tanna, Ashish R.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 1905 - 1910
  • [28] NUCLEAR MAGNETIC RESONANCE IN FERRIMAGNETIC MNFE2O4
    HEEGER, AJ
    HOUSTON, TW
    PHYSICAL REVIEW, 1964, 135 (3A): : A661 - +
  • [29] Synthesis of MnFe2O4 nanofibres by hydrothermal method
    Hou, Xiang-Yu
    Feng, Jing
    Wang, Zhi-Qiang
    Liu, Xiao-Han
    Zhang, Mi-Lin
    Gongneng Cailiao/Journal of Functional Materials, 2010, 41 (10): : 1706 - 1708
  • [30] Synthesis of MnFe2O4 nanoparticles by mechanochemical reaction
    Osmokrovic, P
    Jovalekic, C
    Manojlovic, D
    Pavlovic, MB
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (01): : 312 - 314