Implicit-Explicit Methods for the Efficient Simulation of the Settling of Dispersions of Droplets and Colloidal Particles

被引:2
|
作者
Buerger, Raimund [1 ,2 ]
Mulet, Pep [3 ]
Rubio, Lihki [1 ,2 ]
机构
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, CI2MA, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[3] Univ Valencia, Dept Matemat, Av Vicent Andres Estelles, E-46100 Burjassot, Spain
关键词
Sedimentation of droplets; convection-diffusion system; polynomial viscosity matrix; implicit-explicit method; RUNGE-KUTTA METHODS; SECULAR EQUATION; SCHEMES; IMPLEMENTATION; SEDIMENTATION; SOLVERS; MATRIX; MODELS;
D O I
10.4208/aamm.OA-2017-0029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Techniques for the efficient approximate solution of systems of convection-diffusion partial differential equations modelling the sedimentation of droplets of different sizes in a viscous fluid are introduced. These techniques comprise the use of Polynomial Viscosity Matrix (PVM) methods for the convective numerical fluxes and implicit treatment of the nonlinear diffusion terms. Numerical examples based on [A. Abeynaike et al., Chem. Eng. Sci., 79 (2012), pp. 125-137] are presented.
引用
收藏
页码:445 / 467
页数:23
相关论文
共 50 条
  • [31] Extrapolation-based implicit-explicit general linear methods
    Cardone, Angelamaria
    Jackiewicz, Zdzislaw
    Sandu, Adrian
    Zhang, Hong
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 377 - 399
  • [32] Implicit-explicit two-step peer methods with RK stability for implicit part
    Sharifi, Mohammad
    Abdi, Ali
    Hojjati, Gholamreza
    Mousavi, Aida
    NUMERICAL ALGORITHMS, 2024, : 2145 - 2170
  • [33] Efficient pricing of options in jump-diffusion models: Novel implicit-explicit methods for numerical valuation
    Maurya, Vikas
    Singh, Ankit
    Yadav, Vivek S.
    Rajpoot, Manoj K.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 217 : 202 - 225
  • [34] NONLINEAR STABILITY OF THE IMPLICIT-EXPLICIT METHODS FOR THE ALLEN-CAHN EQUATION
    Feng, Xinlong
    Song, Huailing
    Tang, Tao
    Yang, Jiang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 679 - 695
  • [35] IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT METHODS FOR THE SEMICONDUCTOR DEVICE PROBLEM
    CHEN Wei(Department of Economics
    Journal of Systems Science & Complexity, 2003, (01) : 101 - 113
  • [36] Strong stability preserving implicit-explicit transformed general linear methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 176 : 206 - 225
  • [37] Parallelization of Implicit-Explicit Runge-Kutta methods for cluster of PCs
    Mantas, JM
    González, P
    Carrillo, JA
    EURO-PAR 2005 PARALLEL PROCESSING, PROCEEDINGS, 2005, 3648 : 815 - 825
  • [38] Partitioned and Implicit-Explicit General Linear Methods for Ordinary Differential Equations
    Zhang, Hong
    Sandu, Adrian
    Blaise, Sebastien
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) : 119 - 144
  • [39] IMPLICIT-EXPLICIT MULTISTEP FINITE ELEMENT METHODS FOR THE SEMICONDUCTOR DEVICE PROBLEM
    CHEN WeiDepartment of Economics Shandong University Jinan Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China
    JournalofSystemsScienceandComplexity, 2003, (01) : 101 - 113
  • [40] Local Time Stepping for Implicit-Explicit Methods on Time Varying Grids
    Coquel, F.
    Nguyen, Q. -L.
    Postel, M.
    Tran, Q. -H.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 257 - +