Implicit-explicit two-step peer methods with RK stability for implicit part

被引:0
|
作者
Sharifi, Mohammad [1 ]
Abdi, Ali [1 ,2 ]
Hojjati, Gholamreza [1 ,2 ]
Mousavi, Aida [1 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
关键词
IMEX methods; Diagonally implicit two-step peer methods; Order conditions; Runge-Kutta stability; Stability analysis; RUNGE-KUTTA METHODS; GENERAL LINEAR METHODS; W-METHODS; MULTISTEP METHODS; CONSTRUCTION; SCHEMES; DIMSIMS;
D O I
10.1007/s11075-024-01867-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a new family of implicit-explicit (IMEX) schemes appropriate for dealing with the systems of differential equations including two non-stiff and stiff parts on the right-hand side. The proposed IMEX schemes are a combination of s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{s}$$\end{document}-stage explicit and implicit diagonally implicit two-step peer methods, in which the implicit part of the methods is A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document}- or L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{L}$$\end{document}-stable and also equipped with Runge-Kutta stability property. The order conditions of this class of IMEX schemes are derived for the methods of orer p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} and their stability behavior is analyzed. Some examples of the methods with p=s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}=\varvec{s}$$\end{document} up to order five are constructed and the performance of the proposed methods is investigated by giving the results of some numerical experiments.
引用
收藏
页码:2145 / 2170
页数:26
相关论文
共 50 条
  • [1] On the construction of diagonally implicit two-step peer methods with RK stability
    Sharifi, M.
    Abdi, A.
    Hojjati, G.
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 138 - 147
  • [2] A CLASS OF IMPLICIT-EXPLICIT TWO-STEP RUNGE-KUTTA METHODS
    Zharovsky, Evgeniy
    Sandu, Adrian
    Zhang, Hong
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 321 - 341
  • [3] Strong stability preserving implicit and implicit-explicit second derivative general linear methods with RK stability
    Moradi, Afsaneh
    Abdi, Ali
    Hojjati, Gholamreza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04):
  • [4] Super-convergent implicit-explicit Peer methods with variable step sizes
    Schneider, Moritz
    Lang, Jens
    Weiner, Rudiger
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 387
  • [5] On the stability of implicit-explicit linear multistep methods
    Frank, J
    Hundsdorfer, W
    Verwer, JG
    APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) : 193 - 205
  • [6] Stability of implicit and implicit-explicit multistep methods for nonlinear parabolic equations
    Akrivis, Georgios
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1768 - 1796
  • [7] Extrapolation-based implicit-explicit Peer methods with optimised stability regions
    Lang, Jens
    Hundsdorfer, Willem
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 337 : 203 - 215
  • [8] Extrapolation-based super-convergent implicit-explicit Peer methods with A-stable implicit part
    Schneider, Moritz
    Lang, Jens
    Hundsdorfer, Willem
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 367 : 121 - 133
  • [9] Transformed implicit-explicit second derivative diagonally implicit multistage integration methods with strong stability preserving explicit part
    Moradi, A.
    Sharifi, M.
    Abdi, A.
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 14 - 31
  • [10] Comparison of implicit-explicit and Newton linearized variable two-step BDF methods for semilinear parabolic equations
    Wang, Wansheng
    Jin, Chengyu
    Huang, Yi
    Li, Linhai
    Zhang, Chun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):