Photodiode with resonant cavity based on InGaAs/InP for 1.9 μm band

被引:0
|
作者
Zynek, J
Jasik, A
Strupinski, W
Rutkowski, J
Jagoda, A
Przyborowska, K
Jakiela, R
Piersa, M
Wnuk, A
机构
[1] Inst Elect Mat Technol, PL-01919 Warsaw, Poland
[2] Mil Univ Technol, Inst Appl Phys, PL-00908 Warsaw, Poland
关键词
RCE photodetector; InGaAs photodiode;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of the work aiming at development of a RCE photodiode operating at 1.9 mum are described. Detection is based on interband absorption in a thin pseudomorphic InGaAs layer placed inside a resonant cavity which enhances an optical field. The technology of heterostructures grown by MOCVD has been developed. The photodiode structure comprises, between two parallel Bragg mirrors, an InP p-i-n junction with a thin strained InxGa1-xAs (0.65 less than or equal to x less than or equal to 0.8) layer placed inside an undoped region. The bottom Bragg mirror is composed of an In0.53Ga0.47As/InP quarter-wave layer stack, the top mirror is made of Si/SiO2 layers deposited on epitaxial layers by a sputtering method. Good properties of InxGa1-xAs strained layers and good reflectivity spectra of the Bragg mirrors enable us to obtain RCE photodetectors with photoresponse characteristics at wavelengths near 1.9 mum. Photodetectors exhibit very low dark current densities (of the order of 10(-6) A/CM2).
引用
收藏
页码:149 / 155
页数:7
相关论文
共 50 条
  • [41] 1.57-μm InP-based resonant-cavity-enhanced photodetector with InP/air-gap Bragg reflectors
    Ren, XM
    Huang, H
    Chong, YZ
    Huang, YQ
    [J]. MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2004, 42 (02) : 133 - 135
  • [42] Dependence of InGaAs/InP avalanche photodiode based single photon detector's noise characteristics on the photodiode's active area
    Zavodilenko, V.
    Losev, A.
    Miller, A.
    Kurochkin, V.
    Kurochkin, Y.
    [J]. 4TH INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2017), 2017, 917
  • [43] Material Defects and Dark Currents in InGaAs/InP Avalanche Photodiode Devices
    Guo, Zilu
    Wang, Wenjuan
    Li, Yangjun
    Qu, Huidan
    Fan, Liuyan
    Chen, Xiren
    Zhu, Yicheng
    Gu, Yue
    Wang, Yajie
    Zheng, Changlin
    Chen, Pingping
    Lu, Wei
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (09) : 4944 - 4949
  • [44] Characteristics of a planar InP/InGaAs avalanche photodiode with a thin multiplication layer
    Hyun, KS
    Kwon, YH
    Yun, I
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 44 (04) : L779 - L784
  • [45] Theroretical Modelling of Zinc Diffusion for InGaAs/InP Planar Avalanche Photodiode
    Nie, Biying
    Tong, Zhonghua
    Xie, Zongheng
    Shan, Jie
    Chen, Xi
    Xie, Shiyu
    Fang, Ruiyu
    Xu, Dong
    [J]. 2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 1496 - 1499
  • [46] InGaAs/InP avalanche photodiode with separated absorption, charge and multiplication layers
    Hasko, D
    [J]. 2004 INTERNATIONAL STUDENTS AND YOUNG SCIENTISTS WORKSHOP PHOTONICS AND MICROSYSTEMS, PROCEEDINGS, 2004, : 17 - 19
  • [47] Design and Simulation of InGaAs/InP Avalanche Photodiode for Single Photon Detection
    Yang, Rui
    [J]. SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [48] HIGH QUANTUM EFFICIENCY, LONG WAVELENGTH INP/INGAAS MICROCAVITY PHOTODIODE
    DENTAI, AG
    KUCHIBHOTLA, R
    CAMPBELL, JC
    TSAI, C
    LEI, C
    [J]. ELECTRONICS LETTERS, 1991, 27 (23) : 2125 - 2127
  • [49] Intrinsic Layer Zn Doping Diffusion Control and Bandwidth Modulation of InP/InGaAs/InP Photodiode
    Liu, Hongwei
    Wang, Xinwei
    Niu, Pingjuan
    Shields, Philip
    Zhang, Zanyun
    Li, Xiaoyun
    Liu, Chao
    Wang, Duxiang
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2021, 33 (10) : 503 - 506
  • [50] Origin of large dark current increase in InGaAs/InP avalanche photodiode
    Wen, J.
    Wang, W. J.
    Chen, X. R.
    Li, N.
    Chen, X. S.
    Lu, W.
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 123 (16)