Solving Graph Coloring Problems with the Douglas-Rachford Algorithm

被引:10
|
作者
Aragon Artacho, Francisco J. [1 ]
Campoy, Ruben [1 ]
机构
[1] Univ Alicante, Alicante, Spain
关键词
Douglas-Rachford algorithm; Graph coloring; Feasibility problem; Non-convex; CONVERGENCE; FEASIBILITY; SETS;
D O I
10.1007/s11228-017-0461-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the Douglas-Rachford algorithm as a successful heuristic for solving graph coloring problems. Given a set of colors, these types of problems consist in assigning a color to each node of a graph, in such a way that every pair of adjacent nodes are assigned with different colors. We formulate the graph coloring problem as an appropriate feasibility problem that can be effectively solved by the Douglas-Rachford algorithm, despite the nonconvexity arising from the combinatorial nature of the problem. Different modifications of the graph coloring problem and applications are also presented. The good performance of the method is shown in various computational experiments.
引用
收藏
页码:277 / 304
页数:28
相关论文
共 50 条
  • [41] Recent Results on Douglas-Rachford Methods for Combinatorial Optimization Problems
    Artacho, Francisco J. Aragon
    Borwein, Jonathan M.
    Tam, Matthew K.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (01) : 1 - 30
  • [42] THE DOUGLAS-RACHFORD ALGORITHM WITH NEW ERROR SEQUENCES FOR AN INCLUSION PROBLEM
    Wang, Yamin
    Wang, Fenghui
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2022, 2022
  • [43] THE DOUGLAS-RACHFORD ALGORITHM FOR TWO (NOT NECESSARILY INTERSECTING) AFFINE SUBSPACES
    Bauschke, Heinz H.
    Moursi, Walaa M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 968 - 985
  • [44] Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage
    Setzer, Simon
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2009, 5567 : 464 - 476
  • [45] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287
  • [46] A randomized block Douglas-Rachford method for solving linear matrix equation
    Huang, Baohua
    Peng, Xiaofei
    [J]. CALCOLO, 2024, 61 (03)
  • [47] 广义循环Douglas-Rachford算法
    郭科
    张有才
    [J]. 西华师范大学学报(自然科学版), 2018, 39 (04) : 404 - 409
  • [48] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [49] Proximal Point Algorithm, Douglas-Rachford Algorithm and Alternating Projections: A Case Study
    Bauschke, Heinz H.
    Dao, Minh N.
    Noll, Dominikus
    Phan, Hung M.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2016, 23 (01) : 237 - 261
  • [50] SURVEY: SIXTY YEARS OF DOUGLAS-RACHFORD
    LINDSTROM, S. C. O. T. T. B.
    SIMS, B. R. A. I. L. E. Y.
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 333 - 370