Rapid recrystallisation and surface modification of titanium by electro discharge

被引:6
|
作者
Jo, Y. J. [1 ]
Jo, Y. H. [1 ]
Seong, J. G. [1 ]
Kim, Y. H. [2 ]
Chang, S. Y. [3 ]
Noh, M. S. [4 ]
Jeong, H. G. [4 ]
Lee, W. H. [1 ]
机构
[1] Sejong Univ, Fac Nanotechnol & Adv Mat Engn, Seoul 143747, South Korea
[2] Wonkwang Hlth Sci Univ, Dept Dent Lab Technol, Iksan 570750, South Korea
[3] Korea Aerosp Univ, Dept Mat Engn, Goyang Si 412791, South Korea
[4] Posung High Sch, Ctr SCINOVATOR, Seoul 138829, South Korea
基金
新加坡国家研究基金会;
关键词
Discharge; Titanium; Microstructure; Hardness; XPS; THERMAL-OXIDATION BEHAVIOR; IMPLANTS; ALLOYS;
D O I
10.1179/1743294414Y.0000000361
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
2.0 to 3.5 kJ of input energy as a single pulse from a 150 mu F capacitor was applied to a 50% cold rolled Ti to induce rapid recrystallisation and surface modification. Using an input energy of 2.0 kJ, complete recrystallisation occurred over a period of 96 mu s and the resulting microstructure was identical to that of a Ti before cold rolling. With an input energy of 2.5 kJ or higher, thermal oxycarburisation progressed by the formation of a titanium oxycarbide layer and the activation energy for the associated diffusion process was calculated to be 231 kJ mol(-1). A much higher value of hardness that was observed at the edge of the cross section was attributed to oxygen and carbon induced solid solution hardening. Both the recrystallisation and surface modification processes depended on the amount of heat generated during an electro discharge, which could be manipulated by input energy and capacitance.
引用
收藏
页码:885 / 891
页数:7
相关论文
共 50 条
  • [41] On surface Modification of Ti Alloy by Electro Discharge Coating Using Hydroxyapatite Powder Mixed Dielectric with Graphite Tool
    Singh G.
    Sidhu S.S.
    Bains P.S.
    Singh M.
    Bhui A.S.
    Journal of Bio- and Tribo-Corrosion, 2020, 6 (03):
  • [42] Electrical discharge process for rapid oxycarburisation of titanium in air
    Jo, Y. J.
    Jo, Y. H.
    Seong, J. G.
    Kim, Y. H.
    Chang, S. Y.
    Lee, W. H.
    MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (08) : 989 - 995
  • [43] Composite titanium dental implant fabricated by electro-discharge compaction
    Qiu, J
    Dominici, JT
    Lifland, MI
    Okazaki, K
    BIOMATERIALS, 1997, 18 (02) : 153 - 160
  • [44] Mechanical Properties of Electro-Discharge-Sintered Porous Titanium Implants
    Hyun, C. Y.
    Huh, J. K.
    Lee, W. H.
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2006, 16 (03): : 173 - 177
  • [45] Electro discharge machining of nickel-titanium shape memory alloys
    Theisen, W
    Schuermann, A
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 378 (1-2): : 200 - 204
  • [46] Microstructure evolution of titanium after tensile and recrystallisation
    Wronski, S.
    Jedrychowski, M.
    Tarasiuk, J.
    Bacroix, B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 692 : 113 - 126
  • [47] DEFORMABILITY AND RECRYSTALLISATION OF ALPHA-TITANIUM ALLOYS
    ALFEROVA, NS
    SHEVCHEN.VI
    RUSSIAN METALLURGY, 1965, (02): : 74 - &
  • [48] Surface modification of compressor steels using thermally assisted ionic diffusion in the titanium plasma of a vacuum arc discharge
    Muboyadzhyan S.A.
    Azarovskii E.N.
    Russian Metallurgy (Metally), 2015, 2015 (11) : 868 - 875
  • [49] Surface modification of titanium using laser beam
    Nishio, K
    Yamaguchi, T
    Era, H
    Katoh, M
    MATERIALS TRANSACTIONS, 2004, 45 (05) : 1613 - 1619
  • [50] Grafting modification on the surface of titanium dioxide by polystyrene
    Wu, W
    Lu, SC
    Chen, JF
    Shao, L
    Tan, CK
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2003, 10 (06): : 52 - 56