Towards Ultimate Scaling Limits of Phase-Change Memory

被引:0
|
作者
Xiong, F. [1 ,2 ]
Yalon, E. [1 ]
Behnam, A. [3 ]
Neuman, C. M. [1 ]
Grosse, K. L. [3 ,4 ]
Deshmukh, S. [1 ]
Pop, E. [1 ,5 ]
机构
[1] Stanford Univ, Elect Engn, Stanford, CA 94305 USA
[2] Univ Pittsburgh, Elect & Comp Engn, Pittsburgh, PA 15261 USA
[3] Univ Illinois, Urbana, IL 61801 USA
[4] Raytheon Space & Airborne Syst, Mckinney, TX 75071 USA
[5] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA
关键词
TRANSITIONS; RESISTANCE; GRAPHENE; STORAGE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data storage based on a reversible material phase transition (e.g. amorphous to crystalline) has been studied for nearly five decades. Yet, it was only during the past five years that some phase-change memory technologies (e.g. GeSbTe) have been approaching the physical scaling limits of the smallest possible memory cell. Here we review recent results from our group and others, which have achieved sub-10 nm scale PCM with switching energy approaching single femtojoules per bit Fundamental limits could be as low as single attojoules per cubic nanometer of the memory material, although approaching such limits in practice appears strongly limited by electrical and thermal parasitics, i.e. contacts and interfaces.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Scaling Analysis of Nanowire Phase-Change Memory
    Liu, Jie
    Yu, Bin
    Anantram, M. P.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (10) : 1340 - 1342
  • [2] Scaling properties of phase-change line memory
    杜小锋
    宋三年
    宋志棠
    刘卫丽
    吕士龙
    顾怡峰
    薛维佳
    席韡
    [J]. Chinese Physics B, 2012, 21 (09) : 554 - 558
  • [3] Scaling properties of phase-change line memory
    Du Xiao-Feng
    Song San-Nian
    Song Zhi-Tang
    Liu Wei-Li
    Lu Shi-Long
    Gu Yi-Feng
    Xue Wei-Jia
    Xi Wei
    [J]. CHINESE PHYSICS B, 2012, 21 (09)
  • [4] Scaling analysis of phase-change memory technology
    Pirovano, A
    Lacaita, AL
    Benvenuti, A
    Pellizzer, F
    Hudgens, S
    Bez, R
    [J]. 2003 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, TECHNICAL DIGEST, 2003, : 699 - 702
  • [5] Breaking the Speed Limits of Phase-Change Memory
    Loke, D.
    Lee, T. H.
    Wang, W. J.
    Shi, L. P.
    Zhao, R.
    Yeo, Y. C.
    Chong, T. C.
    Elliott, S. R.
    [J]. SCIENCE, 2012, 336 (6088) : 1566 - 1569
  • [6] Towards Femtojoule Nanoparticle Phase-Change Memory
    Denisyuk, Andrey I.
    MacDonald, Kevin F.
    Javier Garcia de Abajo, F.
    Zheludev, Nikolay I.
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (03)
  • [7] Phase-change materials - Towards a universal memory?
    Wuttig, M
    [J]. NATURE MATERIALS, 2005, 4 (04) : 265 - 266
  • [8] Phase-Change Memory-Towards a Storage-Class Memory
    Fong, Scott W.
    Neumann, Christopher M.
    Wong, H. -S. Philip
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (11) : 4374 - 4385
  • [9] Phase-change memory
    Eiichi Kuramochi
    Masaya Notomi
    [J]. Nature Photonics, 2015, 9 : 712 - 714
  • [10] Scaling of Data Retention Statistics in Phase-Change Random Access Memory
    Kwon, Yongwoo
    Park, Byoungnam
    Kang, Dae-Hwan
    [J]. IEEE ELECTRON DEVICE LETTERS, 2015, 36 (05) : 454 - 456