Heat Transfer Performance of Different Nanofluids Flows in a Helically Coiled Heat Exchanger

被引:26
|
作者
Khairul, M. A. [1 ]
Saidur, R. [1 ]
Hossain, Altab [1 ]
Alim, M. A. [1 ]
Mahbubul, I. M. [1 ]
机构
[1] Univ Malaya, Dept Mech Engn, Fac Engn, Kuala Lumpur 50603, Malaysia
关键词
Coiled tube; Nanofluids; Heat transfer enhancement; Friction factor; Pressure drop; THERMAL-CONDUCTIVITY; PRESSURE-DROP; TUBE; ENHANCEMENT;
D O I
10.4028/www.scientific.net/AMR.832.160
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Helically coiled heat exchangers are globally used in various industrial applications for their high heat transfer performance and compact size. Nanofluids can provide excellent thermal performance of this type of heat exchangers. In the present study, the effect of different nanofluids on the heat transfer performance in a helically coiled heat exchanger is examined. Four different types of nanofluids CuO/water, Al2O3/water, SiO2/water, and ZnO/water with volume fractions 1 vol.% to 4 vol.% was used throughout this analysis and volume flow rate was remained constant at 3 LPM. Results show that the heat transfer coefficient is high for higher particle volume concentration of CuO/water, Al2O3/water and ZnO/water nanofluids, while the values of the friction factor and pressure drop significantly increase with the increase of nanoparticle volume concentration. On the contrary, low heat transfer coefficient was found in higher concentration of SiO2/water nanofluids. The highest enhancement of heat transfer coefficient and lowest friction factor occurred for CuO/water nanofluids among the four nanofluids. However, highest friction factor and lowest heat transfer coefficient were found for SiO2/water nanofluids. The results reveal that, CuO/water nanofluids indicate significant heat transfer performance for helically coiled heat exchanger systems though this nanofluids exhibits higher pressure drop.
引用
收藏
页码:160 / 165
页数:6
相关论文
共 50 条
  • [31] Experimental investigation on convective heat transfer and pressure drop of cone helically coiled tube heat exchanger using carbon nanotubes/water nanofluids
    Palanisamy, K.
    Kumar, P. C. Mukesh
    HELIYON, 2019, 5 (05)
  • [32] Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers
    Huminic, Gabriela
    Huminic, Angel
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 71 : 118 - 125
  • [33] CFD analysis on heat and flow characteristics of double helically coiled tube heat exchanger handling MWCNT/water nanofluids
    Kumar, P. C. Mukesh
    Chandrasekar, M.
    HELIYON, 2019, 5 (07)
  • [34] Numerical investigation of heat-transfer enhancement in helically coiled spiral grooved tube heat exchanger
    Xu, Peng
    Zhou, Tao
    Xing, Jiaxin
    Chen, Juan
    Fu, Zhongguang
    PROGRESS IN NUCLEAR ENERGY, 2022, 145
  • [35] EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER AND PRESSURE LOSS CHARACTERISTICS OF THE GROOVED HELICALLY COILED TUBE HEAT EXCHANGER
    Cao, Jiaming
    Wang, Xuesheng
    Yuan, Yuyang
    Zhang, Zhao
    Xiao, Zhengyan
    HEAT TRANSFER RESEARCH, 2024, 55 (03) : 75 - 94
  • [36] Numerical Analysis of Heat Transfer on the Shell Side of a Helically Coiled Tube Heat Exchanger for Helium Applications
    Filip, Radomir
    Melichar, Tomas
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2021, 7 (02):
  • [37] Heat transfer during annular tube contact in a helically coiled tube-in-tube heat exchanger
    Louw, WI
    Meyer, JP
    HEAT TRANSFER ENGINEERING, 2005, 26 (06) : 16 - 21
  • [38] Numerical simulation of flow and heat transfer performance of tube-shell coupled helically coiled corrugated tube heat exchanger
    Duan, Yiran
    Zhang, Xiaoyan
    Han, Ziyi
    Liu, Qingjiang
    Li, Xingge
    Li, Linchuan
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 153
  • [39] Heat transfer enhancement by combination of chaotic advection and nanofluids flow in helically coiled tube
    Tohidi, A.
    Ghaffari, H.
    Nasibi, H.
    Mujumdar, A. S.
    APPLIED THERMAL ENGINEERING, 2015, 86 : 91 - 105
  • [40] Heat transfer and performance analysis of nanofluid flow in helically coiled tube heat exchangers
    Bahrehmand, S.
    Abbassi, A.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 109 : 628 - 637