Landslide Inventory Mapping From Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation

被引:103
|
作者
Lv, Zhi Yong [1 ]
Shi, Wenzhong [2 ,3 ]
Zhang, Xiaokang [4 ]
Benediktsson, Jon Atli [5 ]
机构
[1] XiAn Univ Technol, Sch Comp Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[2] Hong Kong Polytech Univ, Joint Spatial Informat Res Lab, Wuhan 430079, Hubei, Peoples R China
[3] Wuhan Univ, Wuhan 430079, Hubei, Peoples R China
[4] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[5] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
基金
中国国家自然科学基金;
关键词
Change detection; high spatial resolution remote sensing image; landslide inventory map; majority voting (MV); multithresholds; multiscale segmentation; DATA FUSION; LIDAR DATA; CLASSIFICATION; FRAMEWORK; INTEGRATION; EARTHQUAKE; ALGORITHM; SYSTEMS; INSAR;
D O I
10.1109/JSTARS.2018.2803784
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Landslide inventory mapping (LIM) plays an important role in hazard assessment and hazard relief. Even though much research has taken place in past decades, there is space for improvements in accuracy and the usability of mapping systems. In this paper, a new landslide inventory mapping framework is proposed based on the integration of the majority voting method and the multiscale segmentation of a postevent images, making use of spatial feature of landslide. Compared with some similar state-of-the-art methods, the proposed framework has three advantages: 1) the generation of LIM is almost automatic; 2) the framework can achieve more accurate results because it takes into account the landslide spatial information in an irregular manner through multisegmentation of the postevent image and object-based majority voting (MV); and 3) it needs less parameter tuning. The proposed framework was applied to four landslide sites on Lantau Island, Hong Kong. Compared with existing methods, including region level set evolution (RLSE), edge level set evolution (ELSE) and change detection Markov random field (CDMRF) methods, quantitative evaluation shows the proposed framework is competitive in terms of Completeness. The framework outperformed RLSE, ELSE, and CDMRF for the four experiments by more than 9% in Correctness and by 8% in Quality. To the authors' knowledge, this is the first-time that landslide spatial information has been utilized through the integration of multiscale segmentation of postevent image with the MV approach to obtain LIM using high spatial resolution remote sensing images. The approach is also of wide generality and applicable to other kinds of land cover change detection using remote sensing images.
引用
收藏
页码:1520 / 1532
页数:13
相关论文
共 50 条
  • [1] An Iterative Classification and Semantic Segmentation Network for Old Landslide Detection Using High-Resolution Remote Sensing Images
    Lu, Zili
    Peng, Yuexing
    Li, Wei
    Yu, Junchuan
    Ge, Daqing
    Han, Lingyi
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [2] AUTOMATED CHANGE DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES
    Ehlers, Manfred
    Klonus, Sascha
    Tomowski, Daniel
    Michel, Ulrich
    Reinartz, Peter
    GEOSPATIAL DATA AND GEOVISUALIZATION: ENVIRONMENT, SECURITY, AND SOCIETY, 2010, 38
  • [3] Multiscale Cascaded Network for the Semantic Segmentation of High-Resolution Remote Sensing Images
    Zhang, Xiaolu
    Wang, Zhaoshun
    Wei, Anlei
    CANADIAN JOURNAL OF REMOTE SENSING, 2023, 49 (01)
  • [4] Semantic Segmentation of High-Resolution Remote Sensing Images Using Multiscale Skip Connection Network
    Ma, Bifang
    Chang, Chih-Yung
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3745 - 3755
  • [5] Change Detection and Feature Extraction Using High-Resolution Remote Sensing Images
    Sharma V.K.
    Luthra D.
    Mann E.
    Chaudhary P.
    Chowdary V.M.
    Jha C.S.
    Remote Sensing in Earth Systems Sciences, 2022, 5 (3) : 154 - 164
  • [6] Multiscale Global Context Network for Semantic Segmentation of High-Resolution Remote Sensing Images
    Zeng, Qiaolin
    Zhou, Jingxiang
    Tao, Jinhua
    Chen, Liangfu
    Niu, Xuerui
    Zhang, Yumeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [7] A Siamese Multiscale Attention Decoding Network for Building Change Detection on High-Resolution Remote Sensing Images
    Chen, Yao
    Zhang, Jindou
    Shao, Zhenfeng
    Huang, Xiao
    Ding, Qing
    Li, Xianyi
    Huang, Youju
    REMOTE SENSING, 2023, 15 (21)
  • [8] Unsupervised Change Detection Using Fast Fuzzy Clustering for Landslide Mapping from Very High-Resolution Images
    Lei, Tao
    Xue, Dinghua
    Lv, Zhiyong
    Li, Shuying
    Zhang, Yanning
    Nandi, Asoke K.
    REMOTE SENSING, 2018, 10 (09)
  • [9] Interactive Multiscale Classification of High-Resolution Remote Sensing Images
    dos Santos, Jefersson Alex
    Gosselin, Philippe-Henri
    Philipp-Foliguet, Sylvie
    Torres, Ricardo da S.
    Falcao, Alexandre Xavier
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (04) : 2020 - 2034
  • [10] Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data
    Liu, Xinran
    Peng, Yuexing
    Lu, Zili
    Li, Wei
    Yu, Junchuan
    Ge, Daqing
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61