Landslide Inventory Mapping From Bitemporal High-Resolution Remote Sensing Images Using Change Detection and Multiscale Segmentation

被引:103
|
作者
Lv, Zhi Yong [1 ]
Shi, Wenzhong [2 ,3 ]
Zhang, Xiaokang [4 ]
Benediktsson, Jon Atli [5 ]
机构
[1] XiAn Univ Technol, Sch Comp Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[2] Hong Kong Polytech Univ, Joint Spatial Informat Res Lab, Wuhan 430079, Hubei, Peoples R China
[3] Wuhan Univ, Wuhan 430079, Hubei, Peoples R China
[4] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[5] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
基金
中国国家自然科学基金;
关键词
Change detection; high spatial resolution remote sensing image; landslide inventory map; majority voting (MV); multithresholds; multiscale segmentation; DATA FUSION; LIDAR DATA; CLASSIFICATION; FRAMEWORK; INTEGRATION; EARTHQUAKE; ALGORITHM; SYSTEMS; INSAR;
D O I
10.1109/JSTARS.2018.2803784
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Landslide inventory mapping (LIM) plays an important role in hazard assessment and hazard relief. Even though much research has taken place in past decades, there is space for improvements in accuracy and the usability of mapping systems. In this paper, a new landslide inventory mapping framework is proposed based on the integration of the majority voting method and the multiscale segmentation of a postevent images, making use of spatial feature of landslide. Compared with some similar state-of-the-art methods, the proposed framework has three advantages: 1) the generation of LIM is almost automatic; 2) the framework can achieve more accurate results because it takes into account the landslide spatial information in an irregular manner through multisegmentation of the postevent image and object-based majority voting (MV); and 3) it needs less parameter tuning. The proposed framework was applied to four landslide sites on Lantau Island, Hong Kong. Compared with existing methods, including region level set evolution (RLSE), edge level set evolution (ELSE) and change detection Markov random field (CDMRF) methods, quantitative evaluation shows the proposed framework is competitive in terms of Completeness. The framework outperformed RLSE, ELSE, and CDMRF for the four experiments by more than 9% in Correctness and by 8% in Quality. To the authors' knowledge, this is the first-time that landslide spatial information has been utilized through the integration of multiscale segmentation of postevent image with the MV approach to obtain LIM using high spatial resolution remote sensing images. The approach is also of wide generality and applicable to other kinds of land cover change detection using remote sensing images.
引用
收藏
页码:1520 / 1532
页数:13
相关论文
共 50 条
  • [41] Instance Segmentation of Buildings from High-Resolution Remote Sensing Images with Multitask Learning
    Hui J.
    Qin Q.
    Xu W.
    Sui J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (06): : 1067 - 1077
  • [42] A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images
    Li, Ziming
    Yan, Chenxi
    Sun, Ying
    Xin, Qinchuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] MAEANet: Multiscale Attention and Edge-Aware Siamese Network for Building Change Detection in High-Resolution Remote Sensing Images
    Yang, Bingjie
    Huang, Yuancheng
    Su, Xin
    Guo, Haonan
    REMOTE SENSING, 2022, 14 (19)
  • [44] Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images
    Shen, Xiaole
    Guo, Yiquan
    Cao, Jinzhou
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [45] HELIPORT DETECTION IN HIGH-RESOLUTION OPTICAL REMOTE SENSING IMAGES
    Baseski, Emre
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [46] Object-based multiscale segmentation incorporating texture and edge features of high-resolution remote sensing images
    Shen X.
    Guo Y.
    Cao J.
    PeerJ Computer Science, 2023, 9 : 1 - 23
  • [47] A Robust CNN Framework for Change Detection Analysis From Bitemporal Remote Sensing Images
    Sravya, N.
    Bhaduka, Khyati
    Lal, Shyam
    Nalini, J.
    Reddy, Chintala Sudhakar
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12637 - 12648
  • [48] A Robust CNN Framework for Change Detection Analysis From Bitemporal Remote Sensing Images
    Sravya, N.
    Bhaduka, Khyati
    Lal, Shyam
    Nalini, J.
    Reddy, Chintala Sudhakar
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 12637 - 12648
  • [49] High-Resolution Rice Mapping Based on SNIC Segmentation and Multi-Source Remote Sensing Images
    Yang, Lingbo
    Wang, Limin
    Abubakar, Ghali Abdullahi
    Huang, Jingfeng
    REMOTE SENSING, 2021, 13 (06)
  • [50] Oil palm plantation mapping from high-resolution remote sensing images using deep learning
    Dong, Runmin
    Li, Weijia
    Fu, Haohuan
    Gan, Lin
    Yu, Le
    Zheng, Juepeng
    Xia, Maocai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (05) : 2022 - 2046