A De-raining semantic segmentation network for real-time foreground segmentation

被引:7
|
作者
Wang, Fanyi [1 ]
Zhang, Yihui [2 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Henan Univ Sci & Technol, Sch Mechatron Engn, 263 Kaiyuan Ave, Luoyang, Peoples R China
关键词
Real-time; Rainy environments; Foreground segmentation; Encoder-decoder; Lightweight network; IMAGE SEGMENTATION; STREAM;
D O I
10.1007/s11554-020-01042-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few researches have been proposed specifically for real-time semantic segmentation in rainy environments. However, the demand in this area is huge and it is challenging for lightweight networks. Therefore, this paper proposes a lightweight network which is specially designed for the foreground segmentation in rainy environments, named De-raining Semantic Segmentation Network (DRSNet). By analyzing the characteristics of raindrops, the MultiScaleSE Block is targetedly designed to encode the input image, it uses multi-scale dilated convolutions to increase the receptive field, and SE attention mechanism to learn the weights of each channels. To combine semantic information between different encoder and decoder layers, it is proposed to use Asymmetric Skip, that is, the higher semantic layer of encoder employs bilinear interpolation and the output passes through pointwise convolution, then added element-wise to the lower semantic layer of the decoder. According to the control experiments, the performances of MultiScaleSE Block and Asymmetric Skip compared with SEResNet18 and Symmetric Skip respectively are improved to a certain degree on the Foreground Accuracy index. The parameters and the floating point of operations (FLOPs) of DRSNet are only 0.54M and 0.20GFLOPs separately. The state-of-the-art results and real-time performances are achieved on both the UESTC all-day Scenery add rain (UAS-add-rain) and the Baidu People Segmentation add rain (BPS-add-rain) benchmarks with the input sizes of 192*128, 384*256 and 768*512. The speed of DRSNet exceeds all the networks within 1GFLOPs, and Foreground Accuracy index is also the best among the similar magnitude networks on both benchmarks.
引用
收藏
页码:873 / 887
页数:15
相关论文
共 50 条
  • [21] ThunderNet: A Turbo Unified Network for Real-Time Semantic Segmentation
    Xiang, Wei
    Mao, Hongda
    Athitsos, Vassilis
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 1789 - 1796
  • [22] Real-Time Semantic Clothing Segmentation
    Cushen, George. A.
    Nixon, Mark. S.
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 272 - 281
  • [23] Real-Time Semantic Segmentation Network Based on Octave Convolution
    Wang Xin
    Wu Kaijun
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (08)
  • [24] Tripartite real-time semantic segmentation network with scene commonality
    Wang, Chenyang
    Wang, Chuanxu
    Liu, Peng
    Zhang, Zhe
    Lin, Guocheng
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [25] Contextual Attention Refinement Network for Real-Time Semantic Segmentation
    Hao, Shijie
    Zhou, Yuan
    Zhang, Youming
    Guo, Yanrong
    IEEE ACCESS, 2020, 8 (08): : 55230 - 55240
  • [26] Lightweight Asymmetric Dilation Network for Real-Time Semantic Segmentation
    Hu, Xuegang
    Gong, Yu
    IEEE ACCESS, 2021, 9 : 55630 - 55643
  • [27] A lightweight network with attention decoder for real-time semantic segmentation
    Wang, Kang
    Yang, Jinfu
    Yuan, Shuai
    Li, Mingai
    VISUAL COMPUTER, 2022, 38 (07): : 2329 - 2339
  • [28] Real-time semantic segmentation with dual interaction fusion network
    Qu, Shenming
    Duan, Jiale
    Lu, Yongyong
    Cui, Can
    Xie, Yuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [29] A lightweight network with attention decoder for real-time semantic segmentation
    Kang Wang
    Jinfu Yang
    Shuai Yuan
    Mingai Li
    The Visual Computer, 2022, 38 : 2329 - 2339
  • [30] RTSNet: Real-Time Semantic Segmentation Network For Outdoor Scenes
    Ma, Mingyu
    Zou, Fengshan
    Xu, Fang
    Song, Jilai
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 659 - 664