A De-raining semantic segmentation network for real-time foreground segmentation

被引:7
|
作者
Wang, Fanyi [1 ]
Zhang, Yihui [2 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Henan Univ Sci & Technol, Sch Mechatron Engn, 263 Kaiyuan Ave, Luoyang, Peoples R China
关键词
Real-time; Rainy environments; Foreground segmentation; Encoder-decoder; Lightweight network; IMAGE SEGMENTATION; STREAM;
D O I
10.1007/s11554-020-01042-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few researches have been proposed specifically for real-time semantic segmentation in rainy environments. However, the demand in this area is huge and it is challenging for lightweight networks. Therefore, this paper proposes a lightweight network which is specially designed for the foreground segmentation in rainy environments, named De-raining Semantic Segmentation Network (DRSNet). By analyzing the characteristics of raindrops, the MultiScaleSE Block is targetedly designed to encode the input image, it uses multi-scale dilated convolutions to increase the receptive field, and SE attention mechanism to learn the weights of each channels. To combine semantic information between different encoder and decoder layers, it is proposed to use Asymmetric Skip, that is, the higher semantic layer of encoder employs bilinear interpolation and the output passes through pointwise convolution, then added element-wise to the lower semantic layer of the decoder. According to the control experiments, the performances of MultiScaleSE Block and Asymmetric Skip compared with SEResNet18 and Symmetric Skip respectively are improved to a certain degree on the Foreground Accuracy index. The parameters and the floating point of operations (FLOPs) of DRSNet are only 0.54M and 0.20GFLOPs separately. The state-of-the-art results and real-time performances are achieved on both the UESTC all-day Scenery add rain (UAS-add-rain) and the Baidu People Segmentation add rain (BPS-add-rain) benchmarks with the input sizes of 192*128, 384*256 and 768*512. The speed of DRSNet exceeds all the networks within 1GFLOPs, and Foreground Accuracy index is also the best among the similar magnitude networks on both benchmarks.
引用
收藏
页码:873 / 887
页数:15
相关论文
共 50 条
  • [11] Real-time Semantic Segmentation with Context Aggregation Network
    Yang, Michael Ying
    Kumaar, Saumya
    Lyu, Ye
    Nex, Francesco
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 124 - 134
  • [12] Dual Context Network for real-time semantic segmentation
    Hong Yin
    Wenbin Xie
    Jingjing Zhang
    Yuanfa Zhang
    Weixing Zhu
    Jie Gao
    Yan Shao
    Yajun Li
    Machine Vision and Applications, 2023, 34
  • [13] Real-Time Adaptive Foreground/Background Segmentation
    Darren E. Butler
    V. Michael Bove
    Sridha Sridharan
    EURASIP Journal on Advances in Signal Processing, 2005
  • [14] Real-time adaptive foreground/background segmentation
    Butler, DE
    Bove, VM
    Sridharan, S
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (14) : 2292 - 2304
  • [15] Real-Time Foreground Segmentation with Kinect Sensor
    Cinque, Luigi
    Danani, Alessandro
    Dondi, Piercarlo
    Lombardi, Luca
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2015, PT II, 2015, 9280 : 56 - 65
  • [16] Faster BiSeNet : A Faster Bilateral Segmentation Network for Real-time Semantic Segmentation
    Xu, Qi
    Ma, Yinan
    Wu, Jing
    Long, Chengnian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [17] ASFNet: Adaptive multiscale segmentation fusion network for real-time semantic segmentation
    Zha, Hengfeng
    Liu, Rui
    Yang, Xin
    Zhou, Dongsheng
    Zhang, Qiang
    Wei, Xiaopeng
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2021, 32 (3-4)
  • [18] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Shan Zhao
    Xuan Wu
    Kaiwen Tian
    Yang Yuan
    Complex & Intelligent Systems, 2024, 10 : 1899 - 1916
  • [19] Spatial-Semantic Fusion Network for Semantic Segmentation in Real-time
    Fang Yu
    Zhang Xuehe
    Zhang He
    Liu Gangfeng
    Li Changle
    Zhao Jie
    2019 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2019, : 30 - 35
  • [20] Bilateral network with rich semantic extractor for real-time semantic segmentation
    Zhao, Shan
    Wu, Xuan
    Tian, Kaiwen
    Yuan, Yang
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1899 - 1916