MOSER STABILITY FOR LOCALLY CONFORMALLY SYMPLECTIC STRUCTURES

被引:18
|
作者
Bande, G. [1 ]
Kotschick, D. [2 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] Univ Munich, Math Inst, D-80333 Munich, Germany
关键词
GEOMETRY;
D O I
10.1090/S0002-9939-09-09821-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate and prove the analogue of Moser's stability theorem for locally conformally symplectic structures. As special cases we recover some results previously proved by Banyaga.
引用
收藏
页码:2419 / 2424
页数:6
相关论文
共 50 条
  • [1] Some invariants of locally conformally symplectic structures
    Banyaga, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (01): : 29 - 32
  • [2] Contact pairs and locally conformally symplectic structures
    Bande, G.
    Kotschick, D.
    HARMONIC MAPS AND DIFFERENTIAL GEOMETRY, 2011, 542 : 85 - +
  • [3] Locally conformally symplectic reduction
    Miron Stanciu
    Annals of Global Analysis and Geometry, 2019, 56 : 245 - 275
  • [4] Locally conformally symplectic reduction
    Stanciu, Miron
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (02) : 245 - 275
  • [5] Locally conformally symplectic convexity
    Belgun, F.
    Goertsches, O.
    Petrecca, D.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 135 : 235 - 252
  • [6] Locally conformally symplectic bundles
    Otiman, Alexandra
    JOURNAL OF SYMPLECTIC GEOMETRY, 2018, 16 (05) : 1377 - 1408
  • [7] Locally conformally symplectic and kahler geometry
    Bazzoni, Giovanni
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2018, 5 (1-2) : 129 - 154
  • [8] Locally Conformally Symplectic Structures on Compact Non-Kahler Complex Surfaces
    Apostolov, Vestislav
    Dloussky, Georges
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (09) : 2717 - 2747
  • [9] Cohomologies of locally conformally symplectic manifolds and solvmanifolds
    Daniele Angella
    Alexandra Otiman
    Nicoletta Tardini
    Annals of Global Analysis and Geometry, 2018, 53 : 67 - 96
  • [10] Locally conformally symplectic reduction of the cotangent bundle
    Miron Stanciu
    Annals of Global Analysis and Geometry, 2022, 61 : 533 - 551